SISTEMI EMBEDDED

Instruction Set Architecture: RISC/CISC
Addressing Modes
Assembly Language

Federico Baronti Last version: 20180321

Instructions and Sequencing

* Instruction Set Architecture (ISA) can be seen as
the specifications of a processor

— ISA affects processor performances (RISC, CISC, ASIP™)
— Possible different implementations of the same ISA

* Instructions for a computer must support:
— data transfers to and from the memory
— arithmetic and logic operations on data
— program sequencing and control
— input/output transfers

e Let’s start by introducing some notation

" Application-Specific Instruction set Processor

Register Transfer Notation (1)

Register transfer notation (RTN) is used to describe
hardware-level data transfers and operations

Source/Destination can be either processor registers
(e.g. RO, R1,...) or memory locations (usually memory
addresses are represented by symbols, such as LOC,
VARX, A, B,...)

|...] to denote the content of a location
< to denote transfer to a destination

Example: R2 <« [LOC]
(transfer from memory location LOC to register R2)

Register Transfer Notation (2)

* RTN can be extended to show
arithmetic operations involving locations
* Example: R4 « [R2] + [R3]
(add the contents of registers R2 and R3,
place the sum in register R4)

e Right-hand expression always denotes a value,
left-hand side always names a location (i.e.,
specifies its address)

Assembly-Language Notation (1)

RTN shows data transfers and arithmetic (useful
to describe the behavior of an instruction)

Another notation is needed to represent
machine instructions & programs using them

Assembly language is used for this purpose

The two preceding examples using RTN can be
related to the assembly-language instructions:
Load R2, LOC
Add R4, R2, R3

Assembly-Language Notation (2)

An instruction specifies the requested
operation and the operands that are involved

We will use English words for the operations
(e.g., Load, Store, and Add)

Commercial processors use mnemonics,
usually abbreviations (e.g., LD, ST, and ADD)

Mnemonics differ from processor to processor

RISC and CISC Instruction Sets

* Nature of instructions distinguishes computer
 Two fundamentally different approaches

— Reduced Instruction Set Computers (RISC) have
one-word instructions and
require arithmetic operands to be in registers

— Complex Instruction Set Computers (CISC)
have multi-word instructions and
allow operands directly from memory

RISC Instruction Sets (1)

* Each RISC instruction occupies a single word
* Aload/store architecture is used, meaning:

—only Load and Store instructions are used
to access memory operands

— operands for arithmetic/logic instructions
must be in registers, or one of them
can be provided explicitly in the instruction
word (Immediate operand)

—Load proc register, mem location

— Addressing mode specifies actual memory
location

RISC Instruction Sets (2)

Consider high-level language statement:
int A,B,C; C=A+B;

A, B, and C correspond to memory locations

RTN specification with these symbolic names:
C < [A] + [B]

Steps involved: retrieve contents of locations
A and B, compute sum, and transfer result to
location C

RISC Instruction Sets (3)

e Sequence of simple RISC instructions for task
int A,B,C;C=A+B;

Load R2, A

Load R3,B

Add R4, R2, R3 (Add R3, R2, R3)
Store R4, C (Store R3, C)

* Load instruction transfers data to register

e Store instruction transfers data to the
memory. Store uses the reverse operand
order compared to the Load or Add
Instructions

10

Begin execution here —

Assumptions:

 Memory is 32-bit word
length and
byte-addressable

* Load/Store instructions
have the desired operand
address specified directly

Limitations on usable
memory locations for
variables because of RISC
single word instructions
Need for alternative
addressing modes

Address

1
i +4
[+ 8

1+ 12

Contents

R2, A

R3.B

R4, R2,R3

R4, C

-—

4-1nstruction
> program
segment

Data for
the progran

Instruction Execution/Sequencing

How is the program executed?
Processor has program counter (PC) register
Address i of the first instruction placed in PC

Control circuits fetch and execute instructions,
one after another — straight-line sequencing

During execution of each instruction (after
fetch), PC register is incremented by 4

PC content is i + 16 after Store is executed

12

Sum n numbers stored in
memory at consecutive
locations (array) starting at
location address NUM1

* nis stored at location
with address N

* Result needs to be
stored at location address
SUM

* Conditional branching

* Register indirect
addressing mode

Determine address of
"Next" number, load the
"Next" number into RS,

and add it to R3

Subtract R2, R2, #1

Branch_if [R2]>0 LOOP
Store R3. SUM

LOOP

13

Branching

 Branches that test a condition are used in
loops and various other programming tasks

* One way to implement conditional branches
is to compare the contents of two registers,
e.g.,
Branch_if [R4]>[R5] LOOP
* |n generic assembly language with mnemonics

the instruction above might actually appear as
BGT R4, R5, LOOP

Generating Memory Addresses

Loop must obtain “Next” number at each loop
iteration

Load instruction cannot contain full address since
address size (32 bits) = instruction size

Also, Load instruction itself would have to be
modified in each pass to change address

Instead, use register Ri for address location

— Initialize Ri to NUM1 and increment it by 4 inside the
loop

— This method works well for accessing the elements of
an array

Addressing Modes (1)

Programs use data structures to organize
the information used in computations

High-level languages enable programmers
to describe operations for data structures

Compiler translates into assembly language

Addressing modes provide compiler with
different ways to specify operand locations

Consider modes used in RISC-style processors

Addressing Modes (2)

RISC-type addressing modes.

Name Assembler syntax Addressing function
Immediate #Value Operand = Value
Register Ri EA =Ri

Absolute LOC EA = LOC

Register indirect (Ri) EA = [Ri]

Index X(Ri) EA=[Ri]+ X

Base with index (R7,R))

EA = [Ri] + [R/]

EA = effective address
Value = a signed number
X = index value

17

Addressing Modes (3)

e RISC-style instructions have a fixed size (single
word of 32 bits), hence immediate, absolute
and index modes information limited to 16 bits

— Usually sign-extended (depends on the kind of
instruction) to full 32-bit value/address

— Absolute addressing mode is therefore limited to a
subset of the full 32-bit address space

Addressing Modes (4)

LOOP

Determine address of
, "Next" number, load the
Sum n numbers stored in "Next" number into R5

memory at consecutive and add it to R3
locations (array) starting at

location address NUM1
Subtract R2. R2. #1

Branch_if [R2]>0 LOOP

[Load R2. N [Load the size of the list.
Clear R3 Initialize sum to 0.
Move R4, #NUM1 Get address of the first number.

LOOP: |Load RS, (R4) Get the next number.
Add R3.R3. RS Add this number to sum.
Add R4.R4. #4 Increment the pointer to the list.
Subtract R2, R2, #1 Decrement the counter.
Branch if [R2]>0 LOOP Branch back if not finished.
Store R3, SUM Store the final sum. 19

32-bit Immediate Values

To construct 32-bit immediates or addresses, use

two instructions in sequence:
OrHigh R4, RO, #0x2000
Or R4, R4, #0x4FFO

RO always contains O
Result is NUM1=0x20004FFO in register R4

Useful pseudoinstruction for above sequence:
Move(lImmediateAddress) R4, #NUM1
— Assembler substitute the pseudoinstruction with

OrHigh & Or and appropriate 16-bit values for each
instruction

20

Assembly Language

* Mnemonics (LD/ADD instead of Load/Add)
used when programming specific computers

* The mnemonics represent the OP codes

* Assembly language is the set of mnemonics
and rules for using them to write programs

* The rules constitute the language syntax

* Example: suffix ‘I’ to specify immediate mode
ADDI R2,R3,5 (instead of #5)

21

Assembler Directives

Other information also needed to translate
source program to object program

How should symbolic names be interpreted?
Where should instructions/data be placed?
Assembler directives provide this information
ORIGIN defines instruction/data start position
RESERVE and DATAWORD define data storage

EQU associates a name with a constant value

Memory Addressing
address or data
label Operation information
Assembler directive ORIGIN 100
Statements that LD R2. N
generate CLR R3
machine MOV R4, #NUM |
instructions LOOP: LD RS, (R4)
ADD R3, R3, RS
ADD R4, R4, #4
SUB R2, R2, #1
BGT R2, RO, LOOP
ST R3, SUM
next instruction
Assembler directives ORIGIN 200
SUM: RESERVE 4
N: DATAWORD 150
NUMI1: RESERVE 600

END

23

Program Assembly & Execution

From source program, assembler generates
machine-language object program

Assembler uses ORIGIN and other directives
to determine address locations for code/data

For branches, assembler computes toffset
from present address (in PC) to branch target

Loader places object program in memory
Debugger can be used to trace execution

Example Program: Digit Packing

* Memory contains two ASCII decimal digits
starting at address LOC. We want to extract
the BCD of the two decimal digits and “pack”
them to a byte to be stored at memory
location PACKET Memory

‘5'(0x35)}2’(0x32)} LOC

0x25 | PACKET

Move is a pseudo instr. The assembler replaces it with
OrHigh R2, RO, #LOC;, ¢

Or R2, R2, #LOC,. ,

| Move R2. #L.OC R2 points to data.
LoadByte R3, (R2) Load first byte into R3.
LShiftL R3, R3, #4 Shift left by 4 bit positions.
Add R2, R2, #1 Increment the pointer.
LoadByte R4, (R2) Load second byte into R4.
And R4, R4, #0xF Clear high-order bits to zero.
Or R3, R3, R4 Concatenate the BCD digits.

StoreByte R3, PACKED Store the result.

Using the index (indirect with displacement) address
mode, these 2 instr. can be replaced with
LoadByte R4, 1(R2) 26

Encoding of Machine Instructions

Assembly-language instructions express the
actions to be performed by processor circuitry

Assembler converts to machine instructions

Three-operand RISC instructions require
enough bits in single word to identify registers

16-bit immediates must be supported
Instruction must include bits for OP code
Call instruction also needs bits for address

27 26 22 21 0

(a) Register-operand format

31 27 26 22 21 6 5 0

Rsre Rdst Immediate operand OP code
(b) Immediate-operand format

31 6 5 0

(c) Call format

28

RISC Summary

Single word instructions

Operands of arithmetic

and logic operations in
REGISTERS only

Load/store architecture
(no memory to memory
transfers)

Simple addressing
modes

CISC Instruction Sets (1)

Not constrained to load/store architecture
Instructions may be larger than one word

Typically use two-operand instruction format,
with at least one operand in a register

Move instruction equivalent to Load/Store, but

can also transfe

r immediate values

and possibly operate between two memory

locations

Arithmetic instructions may employ

addressing moc
Subtract

es for operands in memory:
OC, Ri

Add

Rj, 16(Rk)

30

CISC Instruction Sets (2)

* Implementation of C=A + B using CISC:

Move
Add

In some CISC ISA only one
operand can be in memory

Move Ri, A
Add Ri, B
Move C, Ri

31

Additional Addressing Modes (1)

CISC style has other modes not usual for RISC

Autoincrement mode: effective address given
by register contents; after accessing operand,
register contents incremented to point to next

Useful for adjusting pointers in loop body:
Add SUM, (Ri)+
MoveByte (Rj)+, Rk
Increment by 4 for words, and by 1 for bytes
— Riis incremented by 4 and Rj by 1

Additional Addressing Modes (2)

Autodecrement mode: before accessing operand,
register contents are decremented, then new
contents provide effective address

Notation in assembly language:
Add Rj, —(Ri)
Use autoinc. & autodec. for stack operations:

Move —(SP), NEWITEM (push)
Move ITEM, (SP)+ (pop)

SP is the Stack Pointer REGISTER, NEWITEM and
ITEM are two generic REGISTERS

Condition Codes

* Processor can maintain information on results
to affect subsequent conditional branches

* Results from arithmetic/logic (& Move)

e Condition code flags in a status register:
N (negative) 1 if result negative, else 0
/ (zero) 1 if result zero, else O
V (overflow) 1 if overflow occurs, else O
C (carry) 1 if carry-out occurs, else O

Branches using Condition Codes

CISC branches check condition code flags

For example, decrementing a register causes
N and Z flags to be cleared if result is > zero

A branch to check logic condition N +Z =0:
Branch>0 LOOP

Other branches test conditions for <, =, #, <, >
Also Branch_if overflow and Branch_if carry
Consider CISC-style array-summing program

Move R2, N Load the size of the list.

Clear R3 Initialize sum to 0.

Move R4, #NUM1 Load address of the first number.
LOOP: Add R3, (R4)+ Add the next number to sum.

Subtract R2, #1 Decrement the counter.

Branch>0 LOOP Loop back if not finished.

Move SUM, R3 Store the final sum.

36

RISC vs CISC Summary

Single word instructions * [nstructions may span

Operands of arithmetic multiple words

and logic operations in Operands of arithmetic

REGISTERS only and logic operations may

Load/store architecture be in memory

(no memory to memory * Move instructions wider

transfers) scope than load/store

Simple addressing modes * More powerful

Faster instruction addressing modes

execution * Smaller size programs

Larger size programs e Slower instruction
execution

RISC reduces hardware complexity at the expense of the
software complexity. Need for sophisticated compilers.

37

References

* C. Hamacher, Z. Vranesic, S. Zaky, N. Manjikian
"Computer Organization and Embedded Systems,”
McGraw-Hill International Edition

— Cap. Il all except sections 2.6 and 2.7

