
SISTEMI EMBEDDED

Instruction Set Architecture: RISC/CISC
Addressing Modes

Assembly Language

Federico Baronti Last version: 20180321

Instructions and Sequencing
• Instruction Set Architecture (ISA) can be seen as

the specifications of a processor
– ISA affects processor performances (RISC, CISC, ASIP*)
– Possible different implementations of the same ISA

• Instructions for a computer must support:
– data transfers to and from the memory
– arithmetic and logic operations on data
– program sequencing and control
– input/output transfers

• Let’s start by introducing some notation

2* Application-Specific Instruction set Processor

Register Transfer Notation (1)

• Register transfer notation (RTN) is used to describe
hardware-level data transfers and operations

• Source/Destination can be either processor registers
(e.g. R0, R1,…) or memory locations (usually memory
addresses are represented by symbols, such as LOC,
VARx, A, B,...)

• […] to denote the content of a location
• ¬ to denote transfer to a destination
• Example: R2 ¬ [LOC]

(transfer from memory location LOC to register R2)

3

Register Transfer Notation (2)

• RTN can be extended to show
arithmetic operations involving locations

• Example: R4 ¬ [R2] + [R3]
(add the contents of registers R2 and R3,

place the sum in register R4)
• Right-hand expression always denotes a value,

left-hand side always names a location (i.e.,
specifies its address)

4

Assembly-Language Notation (1)

• RTN shows data transfers and arithmetic (useful
to describe the behavior of an instruction)

• Another notation is needed to represent
machine instructions & programs using them

• Assembly language is used for this purpose
• The two preceding examples using RTN can be

related to the assembly-language instructions:
Load R2, LOC
Add R4, R2, R3

5

Assembly-Language Notation (2)

• An instruction specifies the requested
operation and the operands that are involved

• We will use English words for the operations
(e.g., Load, Store, and Add)

• Commercial processors use mnemonics,
usually abbreviations (e.g., LD, ST, and ADD)

• Mnemonics differ from processor to processor

6

RISC and CISC Instruction Sets

• Nature of instructions distinguishes computer
• Two fundamentally different approaches
– Reduced Instruction Set Computers (RISC) have

one-word instructions and
require arithmetic operands to be in registers

– Complex Instruction Set Computers (CISC)
have multi-word instructions and
allow operands directly from memory

7

RISC Instruction Sets (1)
• Each RISC instruction occupies a single word
• A load/store architecture is used, meaning:
– only Load and Store instructions are used

to access memory operands
– operands for arithmetic/logic instructions

must be in registers, or one of them
can be provided explicitly in the instruction
word (Immediate operand)
– Load proc_register, mem_location
– Addressing mode specifies actual memory

location
8

RISC Instruction Sets (2)

• Consider high-level language statement:
int A, B, C ; C = A + B;

• A, B, and C correspond to memory locations
• RTN specification with these symbolic names:

C ¬ [A] + [B]
• Steps involved: retrieve contents of locations

A and B, compute sum, and transfer result to
location C

9

RISC Instruction Sets (3)

• Sequence of simple RISC instructions for task
int A, B, C ; C = A + B;

Load R2, A
Load R3, B
Add R4, R2, R3 (Add R3, R2, R3)
Store R4, C (Store R3, C)

• Load instruction transfers data to register
• Store instruction transfers data to the

memory. Store uses the reverse operand
order compared to the Load or Add
instructions

10

11

Assumptions:
• Memory is 32-bit word

length and
byte-addressable

• Load/Store instructions
have the desired operand
address specified directly
• Limitations on usable

memory locations for
variables because of RISC
single word instructions

• Need for alternative
addressing modes

Instruction Execution/Sequencing

• How is the program executed?
• Processor has program counter (PC) register
• Address i of the first instruction placed in PC
• Control circuits fetch and execute instructions,

one after another ® straight-line sequencing
• During execution of each instruction (after

fetch), PC register is incremented by 4
• PC content is i + 16 after Store is executed

12

13

Sum n numbers stored in
memory at consecutive
locations (array) starting at
location address NUM1

• n is stored at location
with address N

• Result needs to be
stored at location address
SUM

• Conditional branching
• Register indirect

addressing mode

LOOP

Branching

• Branches that test a condition are used in
loops and various other programming tasks

• One way to implement conditional branches
is to compare the contents of two registers,
e.g.,

Branch_if_[R4]>[R5] LOOP
• In generic assembly language with mnemonics

the instruction above might actually appear as
BGT R4, R5, LOOP

14

Generating Memory Addresses
• Loop must obtain “Next” number at each loop

iteration
• Load instruction cannot contain full address since

address size (32 bits) = instruction size
• Also, Load instruction itself would have to be

modified in each pass to change address
• Instead, use register Ri for address location
– Initialize Ri to NUM1 and increment it by 4 inside the

loop
– This method works well for accessing the elements of

an array

15

Addressing Modes (1)

• Programs use data structures to organize
the information used in computations

• High-level languages enable programmers
to describe operations for data structures

• Compiler translates into assembly language
• Addressing modes provide compiler with

different ways to specify operand locations
• Consider modes used in RISC-style processors

16

Addressing Modes (2)

17

Addressing Modes (3)

• RISC-style instructions have a fixed size (single
word of 32 bits), hence immediate, absolute
and index modes information limited to 16 bits
– Usually sign-extended (depends on the kind of

instruction) to full 32-bit value/address
– Absolute addressing mode is therefore limited to a

subset of the full 32-bit address space

18

Addressing Modes (4)

19

LOOP

Sum n numbers stored in
memory at consecutive
locations (array) starting at
location address NUM1

32-bit Immediate Values
• To construct 32-bit immediates or addresses, use

two instructions in sequence:
OrHigh R4, R0, #0x2000
Or R4, R4, #0x4FF0

• R0 always contains 0
• Result is NUM1=0x20004FF0 in register R4
• Useful pseudoinstruction for above sequence:

Move(ImmediateAddress) R4, #NUM1
– Assembler substitute the pseudoinstruction with

OrHigh & Or and appropriate 16-bit values for each
instruction

20

Assembly Language

• Mnemonics (LD/ADD instead of Load/Add)

used when programming specific computers

• The mnemonics represent the OP codes

• Assembly language is the set of mnemonics

and rules for using them to write programs

• The rules constitute the language syntax

• Example: suffix ‘I’ to specify immediate mode

ADDI R2, R3, 5 (instead of #5)

21

Assembler Directives

• Other information also needed to translate
source program to object program

• How should symbolic names be interpreted?
• Where should instructions/data be placed?
• Assembler directives provide this information
• ORIGIN defines instruction/data start position
• RESERVE and DATAWORD define data storage
• EQU associates a name with a constant value

22

23

Program Assembly & Execution

• From source program, assembler generates
machine-language object program

• Assembler uses ORIGIN and other directives
to determine address locations for code/data

• For branches, assembler computes ±offset
from present address (in PC) to branch target

• Loader places object program in memory
• Debugger can be used to trace execution

24

Example Program: Digit Packing
• Memory contains two ASCII decimal digits

starting at address LOC. We want to extract
the BCD of the two decimal digits and “pack”
them to a byte to be stored at memory
location PACKET

‘2’(0x32) LOC‘5’(0x35)

0x25 PACKET

Memory

26

Using the index (indirect with displacement) address
mode, these 2 instr. can be replaced with

LoadByte R4, 1(R2)

Move is a pseudo instr. The assembler replaces it with
OrHigh R2, R0, #LOC31-16
Or R2, R2, #LOC15-0

Encoding of Machine Instructions

• Assembly-language instructions express the
actions to be performed by processor circuitry

• Assembler converts to machine instructions
• Three-operand RISC instructions require

enough bits in single word to identify registers
• 16-bit immediates must be supported
• Instruction must include bits for OP code
• Call instruction also needs bits for address

27

28

RISC Summary
• Single word instructions
• Operands of arithmetic

and logic operations in
REGISTERS only

• Load/store architecture
(no memory to memory
transfers)

• Simple addressing
modes

29

CISC Instruction Sets (1)
• Not constrained to load/store architecture
• Instructions may be larger than one word
• Typically use two-operand instruction format,

with at least one operand in a register
• Move instruction equivalent to Load/Store, but

can also transfer immediate values
and possibly operate between two memory
locations

• Arithmetic instructions may employ
addressing modes for operands in memory:

Subtract LOC, Ri
Add Rj, 16(Rk)

30

CISC Instruction Sets (2)

• Implementation of C = A + B using CISC:

31

Move Ri, A
Add Ri, B
Move C, Ri

Move C, A
Add C, B

In some CISC ISA only one
operand can be in memory

Additional Addressing Modes (1)

• CISC style has other modes not usual for RISC
• Autoincrement mode: effective address given

by register contents; after accessing operand,
register contents incremented to point to next

• Useful for adjusting pointers in loop body:
Add SUM, (Ri)+
MoveByte (Rj)+, Rk

• Increment by 4 for words, and by 1 for bytes
– Ri is incremented by 4 and Rj by 1

32

Additional Addressing Modes (2)

• Autodecrement mode: before accessing operand,
register contents are decremented, then new
contents provide effective address

• Notation in assembly language:
Add Rj, -(Ri)

• Use autoinc. & autodec. for stack operations:
Move -(SP), NEWITEM (push)
Move ITEM, (SP)+ (pop)

• SP is the Stack Pointer REGISTER, NEWITEM and
ITEM are two generic REGISTERS

33

Condition Codes

• Processor can maintain information on results
to affect subsequent conditional branches

• Results from arithmetic/logic (& Move)
• Condition code flags in a status register:

N (negative) 1 if result negative, else 0
Z (zero) 1 if result zero, else 0
V (overflow) 1 if overflow occurs, else 0
C (carry) 1 if carry-out occurs, else 0

34

Branches using Condition Codes

• CISC branches check condition code flags

• For example, decrementing a register causes
N and Z flags to be cleared if result is > zero

• A branch to check logic condition N + Z = 0:
Branch>0 LOOP

• Other branches test conditions for <, =, ¹, £, ³
• Also Branch_if_overflow and Branch_if_carry

• Consider CISC-style array-summing program

35

36

RISC vs CISC Summary
• Single word instructions
• Operands of arithmetic

and logic operations in
REGISTERS only

• Load/store architecture
(no memory to memory
transfers)

• Simple addressing modes
• Faster instruction

execution
• Larger size programs

• Instructions may span
multiple words

• Operands of arithmetic
and logic operations may
be in memory

• Move instructions wider
scope than load/store

• More powerful
addressing modes

• Smaller size programs
• Slower instruction

execution

37

RISC reduces hardware complexity at the expense of the
software complexity. Need for sophisticated compilers.

References

• C. Hamacher, Z. Vranesic, S. Zaky, N. Manjikian
"Computer Organization and Embedded Systems,”
McGraw-Hill International Edition
– Cap. II all except sections 2.6 and 2.7

38

