
SISTEMI	EMBEDDED

Basic	Concepts	about	Computers

Federico	Baronti Last	version:	20170307



Embedded	System	Block	Diagram

Embedded	System

Processor

Device/Equipment	to	be	controlled

Memory

Peripherals

Embedded	Computer

Actuator

Actuator

Indicator

DR
IV
ER

SE
N
SO

R	
CO

N
DI
TI
O
N
IN
G

Sensor

Sensor

Sensor

OutputInput



Functional	Units	of	a	Computer



Instructions	and	Programs

• An	instruction specifies	an	operation	and
the	locations	of	its	data	operands

• A	32-bit	word	typically	holds	one	encoded
instruction

• A	sequence	of	instructions,	executed	one
after	another,	constitutes	a	program

• Both	a	program	and	its	data are	stored	in the	
main	memory



Instruction	types

• Four	basic	instruction	types:
– Load: Read	a	data	operand	from	memory	or
an	input	device	into	the	processor	

– Store: Write	a	data	operand	from	a	processor
register	to	memory	or	an	output	device

– Operate: Perform	an	arithmetic	or	logic
operation	on	data	operands	in	processor
registers

– Branch: Alter,	if	a	condition	is	verified,	the	
sequential	execution	of	the	instructions



Program	Example
• A,	B,	and	C,	are	labels representing	memory	word
addresses;	Ri are	processor	registers

• A	program for	the	calculation
C	=	A	+	B

is:

Load R2,	A
Load R3,	B
Add R4,	R2,	R3
Store R4,	C



Main	Processor	Elements	(1)

• The	program counter (PC)	register	holds	the
memory	address	of	the	current	instruction

• The	instruction register (IR)	holds	the	current
instruction

• General-purpose registers hold	data	and
addresses

• Control circuits and	the	arithmetic	and	logic	
unit	(ALU)	fetch	and	execute	instructions



Main	Processor	Elements	(2)



Fetching	and	executing	instructions

Example: Load R2,	LOC

The	processor	control	circuits	do	the	following:

• Send	address	in	PC	to	memory;	issue	Read
• Load	instruction	from	memory	into	IR
• Increment	PC	to	point	to	next	instruction
• Send	address	LOC	to	memory;	issue	Read
• Load	word	from	memory	into	register	R2



Representation	of	Information
• Whatever	is	the	source	of	information,	data	
are	represented	by	a	string	of	bits	(usually	in	a	
number	multiple	of	8,	i.e.,	1	BYTE)

• An	array	of	bits	directly	represents	a	Natural	
number	in	base	2 (positional	binary	notation)
– B	=	bn-1…b1b0 represents	the	number	
V(B)	=	bn-1	x	2n-1 +	... b1	x	21	+	b0	x	20

• Any	other	information	can	be	encoded	by	a	
Natural	using	a	specific	representation
– E.g.	signed	numbers,	floating	point	numbers,	
chars,…

– Representations	typically	use	1,	2,	4,	8	BYTES



Signed	Numbers	(1)

For	signed	integers,	the	leftmost	bit	(MSB)	
contains	the	sign	information:
0 for	positive
1 for	negative

There	are	three	ways	to	represent	signed	
integers:

• Sign	and	magnitude
• 1’s	complement
• 2’s	complement	(the	MSB	has	weight	-2n-1)



Signed	Numbers	(2)



Signed	Numbers	(3)
2’s-complement	representation	is	used	in
current	computers

Consider	a	four-bit	signed	integer	example,
where	the	value	+5	is	represented	as:	
0	1	0	1

To	form	the	value	-5,	complement	all	bits	of
0	1	0	1	 to	obtain 1	0	1	0
and	then	add	1	to	obtain
1	0	1	1



Signed	Numbers	(4)

Replicate	the	sign	bit	to	extend
4-bit	signed	integers	to	8-bit	signed	integers

0	1	0	1 0	0	0	0	0	1	0	1

1	1	1	0 1	1	1	1	1	1	1	0



Character	Encoding
• American	Standard	Code	for	Information
Interchange		(ASCII)

• Uses	7-bit	codes	(extended	version	1	BYTE)
• Some	examples:

character	binary	code	(decimal,	0x	hexadecimal)
A 1	0	0	 0	0	0	1	 (65,											0x41)
a 1	1	0	 0	0	0	1	 (97,											0x61)
0 0	1	1	 0	0	0	0				(48,									 0x30)
1 0	1	1	 0	0	0	1				(49,												0x31)
9 0	1	1		1	0	0	1				(57,												0x39)





Memory	Organization

• Memory	consists	of	many	millions	of	cells
– Each	cell	holds	a	bit	of	information,	0	or	1

• Information	is	usually	handled	in	larger	units:	
bytes	or	words

• A	word is	a	group	of	n bytes
• Word	length	can	be	16,	32	or	64	bits
• Memory can	be	seen	as	either	a	collection	of	
consecutive	bytes	or	words	(of	the	size	
specified	by	the	word	length)



Word	and	Byte	Encoding

• A	common	word	length	is	32	bits
• Such	a	word	can	store	a	32-bit	signed	integer
or	four	8-bit	bytes	(e.g.,	ASCII	characters)

• Words	in	memory	may	store	data	
or	machine	instructions	for	a	program

• Each	machine	instruction	may	require
one	(or	more	consecutive	words	for	encoding)



Addresses	for	Memory	Location

• To	store	or	retrieve	items	of	information,
each	memory	location	has	a	distinct	address

• Numbers	0	to	2k - 1	are	used	as	addresses
for	successive	locations	in	the	memory

• The	2k locations	constitute	the	address	space
• Memory	size	set	by	k (number	of	address	bits)
• Examples: k = 20	 ® 220 or	1M	locations,

k = 32	 ® 232 or		4G	locations



Byte	Addressability

• Byte	size	is	always	8	bits
• But	word	length	may	range	from	16	to	64	bits
• A	byte-addressable memory	assigns	an	
address	to	each	byte

• Byte	locations	have	addresses	0,	1,	2,	…
• Assuming	that	the	word	length	is	32	bits,
word	locations	have	addresses	0,	4,	8,	…



Big- Little-Endianess

• Two	ways	to	assign	byte	address	across	words
• Big-endian addressing	assigns	lower	addresses	
to	more	significant	(leftmost)	bytes	of	word

• Little-endian addressing	uses	opposite	order
• Commercial	computers	use	either	approach,	
and	some	can	support	both	approaches

• Addresses	for	32-bit	words	are	still	0,	4,	8,	…
• Bits	in	each	byte	labeled	b7 …	b0,	left	to	right





Word	Alignment

• #	of	bytes	per	word	is	normally	a	power	of	2
• Word	locations	have	aligned addresses	if	they	
begin	at	byte	addresses	that	are	multiples	of	
the	number	of	bytes	in	a	word

• Examples	of	aligned	addresses:
2	bytes	per	word	® 0,	2,	4,	…
8	bytes	per	word	® 0,	8,	16,	…

• Some	computers	permit	unaligned	addresses


