
SISTEMI	EMBEDDED

Building	a	Nios II	Computer
from	scratch

Federico	Baronti Last	version:	20170327
1

Introduction
• Problem:
– Build	a	(NIOS	II)	Computer	tailored	to	application	needs

• Solutions:
– Use	library	cores	and	custom	HDL	code
– Use	specific	design	tools	(Qsys)	to	help	assemble	the	
system
• Components	(CPUs,	memory	(controllers),	peripherals,…)	selected	
from	Altera,	other	vendors	or	custom	libraries

• Connections	(Avalon	System	Interconnect	Fabric) are	generated	
automatically	by	the	tool
– Need	for	standard	interfaces

• DE2_basic_	and	DE2_media_	computers	are	pre-built	
Nios II	systems	with	different	choices	for	the	proc.	
(economy	and	fast)	and	the	peripherals	available	in	the	
University	Program	package

2

Avalon System	Interconect Fabric

• Overview	of	Avalon	standard	interfaces:
– Clock
– Reset
– Interrupt
–Memory-Mapped	(master	and	slave)
– Streaming	(source	and	sink)
– Conduit

3

Example:	First	Nios	System
• Handles slider switches and	LEDs through	PIO	
peripherals

Avalon	System	Fabric

Nios	II
Core/e

JTAG	Debug	
Module

KEY0

JTAG	Controller

Cyclone	II:	EP2C35F672C6

On-chip
mem

PIO	(8-bit	
input)

SW7	...	SW0

PIO	(8-bit	
output)

LEDG7	...	LEDG0

JTAG	HUB

USB-
BlasterHOST-PC

System	
ID

CLOCK_50

Clock
source

reset_n clk

4

First	Nios Computer	components

• CPU	(simplest,	i.e.,	economy version)	with	
JTAG	Debug	Module

• On-chip	memory for	program and	data	(8	KB)
• 2	PIOs
– Input	for	reading slider switches (8	bit)
– Output	for	driving green	LEDs (8	bit)

• System	ID	Peripheral	for	computer	
identification

5

Nios II	Hardware	Flow

<proc_design_unit>.v<proc_design_unit>.v

Qsys
<nios_system>.qsys

Quartus II

<nios_system>.sopcinfo

Nios II	SBT
Eclipse

<nios_system>.v

<top_level_name>.v

<project_name>.sof

<proc_design_unit>.v

<custom_design_unit>.v<custom_design_unit>.v<custom_design_unit>.v

<project_name>.qpf

<top_level_name >.sdc

<onchip_mem>.hex

6

Qsys Flow

<proc_design_unit>.v<proc_design_unit>.v

Create/Open
Nios II	system

<nios_system>.qsys

<nios_system>.v <proc_design_unit>.v

Insert	component
from	library

Configure	component	
HW	parameters

Configure	Base	
addresses	and	IRQ

End
?

Generate	Nios system

<nios_system>.qsys

Library

<nios_system>.sopcinfo

No
Yes

Configure
Connections

7

Guided	example	(1)
• Create	a	new	project	in	Quartus II	

– Select	FPGA:	Cyclone	II	EP2C35F672C6N
• Launch	Qsys tool
• Define	the	Nios_system components

– Clock	source:	clk (it	is	added	automatically)
– Nios II	Proc.:	nios2_proc

• Choose	the	economy	version	of	the	NiosII proc.	(NiosII/e)	and	the	
Level	1	for	the	JTAG	Debug	Module

– On-chip	Memory:	onchip_memory
– PIO:	green_leds

• Output	for	driving	LEDS
– PIO:	sliders

• Input	for	reading	slider	switches	status
– System	ID	Peripheral:	sysid (ID	=	1!)

8

Qsys main window

Co
nf
ig
ur
e	
in
te
rn
al
	co

nn
ec
tio

ns

De
ci
de

	si
gn
al
s	t
o	
be

	ro
ut
ed

	
(e
xp
or
te
d)
	to

	th
e

Q
sy
ss
ys
te
m
	b
ou

nd
ar
y	
	

Component	instance	name Base	address

9

CPU	choice

• Choose	the	most	suited		
processor	core

• 3	variants:
– Economy
– Standard
– Fast

• Different	features
– Trade-off
performance-cost

At	least	one	memory	must	be	present	in	the	Qsys system	
in	order	to	configure	the	Reset and	Exception addresses

10

Additional peripherals

11

On-chip memory

• Define the	organization
of the	on	chip-memory
– Type (ROM,	RAM)
– Size
– Word	length

• Initialization file:
onchip_mem.hex

12

Guided	example	(2)
• Configure	internal	connections
– Route clk from	Clock	Source	component	to	the	other
components

– Create	reset network
• “Route”	reset	signals from	Clock	Source	and	JTAG	Debug Module (within
the	Nios II	proc.)	components to	the	other components

• Can	be	done automatically using Create	Global	Reset	Network	command
(System	menu)

– Link	the	Avalon Memory-Mapped Interfaces:
• data_master (Nios II	proc.),		jtag_debug_module (Nios II	proc.),	s1
(onchip_memory),	s1 (PIO:	sliders,	green_leds),	control_slave (sysid)

• instruction_master (Nios II	proc.),		jtag_debug_module (Nios II	proc.),	s1	
(onchip_memory)

13

Guided	example	(3)
• Export	external	connections
– Sliders and	green_leds PIOs have conduit interfaces,	the	
related signals (external_connection)	must	be	routed to	
the	Qsys system boundary

• Assign	base	addresses
–Manually	to	each	component	with	slave	Memory-
Mapped	Interfaces	(pay	attention	to	avoid	
overlaps!)

– Assign Base	Addresses (from	the	System	menu)

14

Guided	example	(4)
We	are	now	ready	to	generate	the	Qsys system

and	go	back	to	Quartus II

15

Guided	example	(6)

• Back	to	Quartus II
– Import	Qsys system	into	Quartus project.	Do	one of	
the	followings:
• Method	I:	Add	the	.qip file	stored	in	nios_system>/synthesis
to	the	project

• Method	II:	Add	the	.qsys file	to	the	project	

– Create	the	root	module	of	the	project
– Include	the	Nios_system module	as	hierarchical	block	
(Verilog)

– Import	pin	assignment	from	de2.qsf
– Compile	the	project	to	make	the	hardware	ready

16

Guided	example	(7)

• Integrating	Qsys system	into	Quartus II	
project
–Method	I:	Add	the	(Quartus II	file)	.qip file	stored	
in	<nios_system>/synthesis	to	the	project	
• .qip file	is	created	when	generating	the	Qsys system	
together	with	the	.sopcinfo and	the	HDL	files	
• It	lists	all	the	files	necessary	for	compilation	in	Quartus
II,	including	the	references	to	the	HDL	files	generated	
by	Qsys

17

Guided	example	(8)

• Integrating	Qsys system	into	Quartus II	project
–Method	II:	Add	the	.qsys file	to	project
• The	Qsys system	is	now (re)generated	by	Quartus II	at	
each	compilation

• The	generated	HDL	files	are	stored	at	a	different	path	
than	those	generated	directly	by	Qsys
– db/ip/<nios_system>

• Note	that	the	sysid timestamp	changes	at	each	
compilation	in	Quartus II

• The	BSP	must	be	regenerated	using	the	new	sopcinfo file	
after	each	compilation,	even	if	we	have	not	made	any	
change	to	the	Qsys system!

18

Guided	example	(7a)
• Project	root	module

19

nios_system.v

clk

my_DE2_first_computer.v
(top	module)

AE22 LEDG[0]

LEDG
`
`
`

LEDG[7]Y18

N25 SW[0]
`
`
`

SW[7]C13

`
`

`
`
` green_leds

SW slider_sw

8

8

CLOCK_50 N2CLOCK_50 O
SC
	5
0	
M
Hz

KEY[0] G26KEY[0]reset_n
`
`

Cyclone	II:	EP2C35F672C6

VccVcc

`
`
`

Guided	example	(7b)
• Project	root	module

//	my_DE2_first_computer.v

module my_DE2_first_computer(
//input
CLOCK_50,
KEY,
SW,
//output
LEDG

);
input CLOCK_50;
input [0:0]	KEY;
input [7:0]	SW;

output [7:0]	LEDG;

//	Add	the	nios_system	instance
//		The	instance	template	can	be	copied	from	Qsys	HDL	example	tab

endmodule 20

Guided	example	(7c)
• Project	root	module
(using	Verilog-2001	C-style	port	declaration)

//	my_DE2_first_computer.v

module my_DE2_first_computer(
input CLOCK_50,
input [0:0]	KEY,
input [7:0]	SW,

output [7:0]	LEDG
);

//	Add	the	nios_system	instance
//		The	instance	template	can	be	copied	from	Qsys	HDL	example tab

endmodule

21

Testing	First	Nios System	(1)
• Write	a	program	that	makes	the	GREEN	LEDS	to	be	

controlled	by	the	SLIDERS	SWITCHES
• If successful,	generate	the	hex file	to	initialize the	on-chip	

memory.	Recompile the	Quartus project and	reprogram
the	FPGA.	Your	program should run automatically!

• To	generate	the	hex file	from	elf.	Open	the	Nios 2	
Command Shell	and	navigate	to	the	Eclipse project folder.	
Customize the	following command:

elf2hex	--record=4	--width=32	--base=<onchip_memory base address>
--end=<onchip_memory end address> --input=<eclipse_project_name.elf>
--output=../../Hardware/onchip_mem.hex

22

Testing First	Nios System	(1a)
• Enrich	the	First	Nios System w/	2	additional	PIOs	
properly	configured	to	control	the	push	buttons
(w/	edge	capture	capability)	and	the	HEX3-HEX0	
7-seg	displays available	on	the	DE2	board.
– Make	the	ID	of	this	new	computer	equal	to	2
– Test	the	computer	running the	LED	rotation,	the	Fast	
Click	and	the	Week	day programs

– Recall	that	the	push	button	signal	is	low	when	the	
switch	is	pressed	and	that	a	led	of	the	7-seg	display	is	
ON	when	driven	low
• Try	to	guess	what’s	inside	the	parallel	port	peripheral	
connected	to	the	HEX	7-seg	displays	used	in	the	DE2	Basic	
Computer

23

Testing	First	Nios System	(2)

• Go	back	to	Qsys,	add	the	JTAG-UART	
peripheral (Library/Interface	Protocols/Serial),	
regenerate	the	Nios	system	and	compile	the	
design	again	(top	level	entry	does	not	need	to	
be	changed)

• Write	a	program	that	say	Hello	to	the	host
together w/	the	system ID	and	timestamp

24

Testing	First	Nios System	(3)

• Allocated	on	chip	memory	is	not	enough!
– JTAG-UART	device	driver	requires	more	memory	than	
the	one	available

– In	a	future	lesson,	we	will	learn	some	techniques	to	
reduce	the	memory	footprint	of	our	software

– Now,	we	can:
• try	to	enlarge	the	on-chip	memory.	Note	that EP2C35	FPGA	
has	105	x	M4Kb=52.5	KB;	some	M4K	blocks	are	used	to	
implement	the	proc.	and	the	JTAG	Debug	Module

• add	the	SDRAM	Controller	to	our	Qsys system	to	use	the
8	MB	SDRAM	memory	(Zentel A3V64S40ETP-G6)	present	on	
the	DE2	board

25

SDRAM	memory	(1)
A3V64S40FTP

64M Single Data Rate Synchronous DRAM

Revision 1.0 Aug., 2011 Page 3 / 40

Type Designation Code

A 3 V 64 S 4 0 F TP－ G 6
 Speed Grade 7： 143MHz@CL=3
 6： 166MHz@CL=3

 G： Green

 Package Type TP：TSOP (II)
 Process Generation
 Function Reserved for Future Use
 Organization 2n 4：x16
 SDR Synchronous DRAM
 Density 64：64M bits
 Interface V：LVTTL
 Memory Style (DRAM)
 Zentel DRAM

A0-11

4096 x 256 x 16 4096 x 256 x 16 4096 x 256 x 16 4096 x 256 x 16

DQMU,L

DQ0-15 I/O

Input:
CommandBank	address I/O	Mask 26

SDRAM	memory	(2)

A3V64S40FTP

64M Single Data Rate Synchronous DRAM

Revision 1.0 Aug., 2011 Page 16 / 40

Operation of the SDRAM

Read/Write Operations

Bank active
Before executing a read or write operation, the corresponding bank and the row address must be activated by the bank
active (ACT) command. An interval of tRCD is required between the bank active command input and the following read/write
command input.

Read operation
A read operation starts when a read command is input. Output buffer becomes Low-Z in the (/CAS Latency - 1) cycle after
read command set. The SDRAM can perform a burst read operation.
The burst length can be set to 1, 2, 4 and 8. The start address for a burst read is specified by the column address and the
bank select address at the read command set cycle. In a read operation, data output starts after the number of clocks
specified by the /CAS Latency. The /CAS Latency can be set to 2 or 3.
When the burst length is 1, 2, 4 and 8 the DOUT buffer automatically becomes High-Z at the next clock after the successive
burst-length data has been output.
The /CAS latency and burst length must be specified at the mode register.

A3V64S40FTP

64M Single Data Rate Synchronous DRAM

Revision 1.0 Aug., 2011 Page 17 / 40

Write operation

Burst write or single write mode is selected

1. Burst write: A burst write operation is enabled by setting OPCODE A9 to 0. A burst write starts in the same clock as a write

command set. (The latency of data input is 0 clock.) The burst length can be set to 1, 2, 4 and 8, like burst read operations.
The write start address is specified by the column address and the bank select address at the write command set cycle.

.

2. Single write: A single write operation is enabled by setting OPCODE A9 to 1. In a single write operation, data is only

written to the column address and the bank select address specified by the write command set cycle without regard to the
burst length setting. (The latency of data input is 0 clock).

Read

Write

27

SDRAM	memory	(2)

A3V64S40FTP

64M Single Data Rate Synchronous DRAM

Revision 1.0 Aug., 2011 Page 8 / 40

OPERATING AC PARAMETER
(AC operating conditions unless otherwise noted)

Parameter Symbol
Version

Unit Note
-6 -7

Row active to row active delay tRRD(min) 12 14 ns 1

RAS to CAS delay tRCD(min) 18 21 ns 1

Row precharge time tRP(min) 18 21 ns 1

Row active time
tRAS(min) 40 42 ns 1

tRAS(max) 100 100 us

Row cycle time tRC(min) 58 63 ns 1

Last data in to row precharge tRDL(min) 2 2 CLK 2

Col. address to col. address delay tCCD(min) 1 1 CLK-

Last data in to new col. address delay tCDL(min) 1 1 CLK 2

Last data in to burst stop tBDL(min) 1 1 CLK 2

Mode register set cycle time tMRD(min) 2 2 CLK

Refresh interval time tREF(max) 64 64 ms

Auto refresh cycle time tARFC(min) 60 70 ns

NOTES:
1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and then rounding off to the next
higher integer.
2. Minimum delay is required to complete write.

28

SDRAM	memory	(3)
A3V64S40FTP

64M Single Data Rate Synchronous DRAM

Revision 1.0 Aug., 2011 Page 9 / 40

AC CHARACTERISTICS (AC operating conditions unless otherwise noted)

Parameter Symbol -6 -7
Unit Note

Min Max Min Max

CLK cycle time
CAS latency=3 tCC (3) 6

1000

7

1000 ns 1
CAS latency=2 tCC (2) 10 10

CLK to valid output delay
CAS latency=3 tSAC (3) 5.5 6

ns 1,2
CAS latency=2 tSAC (2) 6 6

Output data hold time
CAS latency=3 tOH (3) 2.5 2.5

ns 2
CAS latency=2 tOH (2) 2.5 2.5

CLK high pulse width tCH 2.5 2.5 ns 3

CLK low pulse width tCL 2.5 2.5 ns 3

Input setup time tSI 1.5 1.5 ns 3

Input hold time tHI 1 1 ns 3

Transition time of CLK tSLZ 0 0 ns 2

CLK to output in Hi-Z
CAS latency=3

tSHZ
 5.5 6

ns
CAS latency=2 6 6

NOTES :
1. Parameters depend on programmed CAS latency.
2. If clock rising time is longer than 1ns, (tr/2-0.5)ns should be added to the parameter.
3. Assumed input rise and fall time (tr & tf) = 1ns.

If tr & tf is longer than 1ns, transient time compensation should be considered,
i.e., [(tr + tf)/2-1]ns should be added to the parameter.

29

SDRAM	memory	(4)

A3V64S40FTP

64M Single Data Rate Synchronous DRAM

Revision 1.0 Aug., 2011 Page 15 / 40

Power-up sequence

Power-up sequence
1. Apply VDD and VDDQ at the same time. Keep CKE low during power up.
2. Wait for stable power.
3. Start clock and drive CKE high.

Note : Voltage on any input pin must not exceed VDD+0.3V during power up.

Initialization sequence
4. After stable power and stable clock, wait 200us.
5. Issue precharge all command (PALL).
6. After tRP delay, set 2 or more auto refresh commands (REF).
7. Set the mode register set command (MRS) to initialize the mode register.

Note : We recommend that you keep DQM and CKE high during initialization sequence to prevent data contention on the DQ
 bus.

 Power stable Clock stable

 CKE

 Command
CKE

PALL REF REF MRS CMD

tRP tARFC tARFC tMRD

30

SDRAM	controller	(1)
A	PLL	can	be	used	to	compensate	for	the	clock	skew
DE2	board	SDRAM	Clock	must	lead	the	Controller	Clock	by	3	ns	(Phase	shift)

31

SDRAM	controller	(2)
• Library/Memory	and	Memory	Controllers/SDRAM	Interfaces

32

SDRAM	controller	(3)
• Library/Memory	and	Memory	Controllers/SDRAM	Interfaces

=	64	ms/4096

33

SDRAM	controller	(4)
• Instantiate	and	configure	the	component	for	
SDRAM	memory

• Set	Qsys internal	connection:	clock,	reset	and	
Avalon	MM	slave

• Export	signals	towards	the	memory	chip	
(Conduit	interface)

• Assign	Base	Address

• Move	Reset	and	Exception	addresses	to	freshly	
created	SDRAM	controller

34

SDRAM	controller	(5)

• Generate	the	Qsys system	(mandatory	if	using	
the	.qip file)	and	go	back	to	Quartus II

• Update	the	Qsys system	instance	(you	can	use	
the	template	in	the	HDL	Example	tab	of	Qsys)

• Update	the	module	interface	to	include	the	
external	SDRAM	controller	signals
– Connect	them	to	new	Qsys system	instance
– Create	the	PLL	to	generate	the	SDRAM	clock

35

SDRAM	controller	(6)
//	my_DE2_first_computer.v

module my_DE2_first_computer(
//input
CLOCK_50,
KEY,
SW,
//output
LEDG
//	Memory	(SDRAM)
DRAM_DQ,
DRAM_ADDR,
DRAM_BA_1,
DRAM_BA_0,
DRAM_CAS_N,
DRAM_RAS_N,
DRAM_CLK,
DRAM_CKE,
DRAM_CS_N,
DRAM_WE_N,
DRAM_UDQM,
DRAM_LDQM

); 36

SDRAM	controller	(6)
input CLOCK_50;
input [0:0] KEY;
input [7:0] SW;
output [7:0] LEDG;
//		Memory	(SDRAM)
inout [15:0] DRAM_DQ;
output [11:0] DRAM_ADDR;
output DRAM_BA_1;
output DRAM_BA_0;
output DRAM_CAS_N;
output DRAM_RAS_N;
output DRAM_CLK;
output DRAM_CKE;
output DRAM_CS_N;
output DRAM_WE_N;
output DRAM_UDQM;
output DRAM_LDQM;

//	Add	the	nios_system	instance
//		The	instance	template	can	be	copied	from	Qsys	HDL	example	tab

//	(Generate)	and	Connect	the	SDRAM	Clock	(DRAM_CLK)
endmodule

37

SDRAM	Clock

• DRAM_CLK	must	lead CLOCK_50	by	3	ns
• Require instantiating	and	configuring	a	PLL
– Can	be	done	using	the	MegaWizard	Plug-in	Manager	
[I/O	Library]

– c0	and	c1	have	the	same	frequency	as	inclok0,	i.e.,	
50	MHz	but	are	shifted
eachother	by	3	ns

• Integrate	the	PLL
into the	top	module

• Compile	the	design
38

Putting	into	practice

• Create	a	new	project	in	Eclipse	and	see	if	the	
new	computer	works	with	the	SDRAM	
memory

• If	ok,	re-enable	the	stdio functions	and	write	a	
simple	program	that	use	them
–Work	on	the	Blocking/Non	blocking	I/O	operations

• When	done,	go	ahead	to	integrate	the	LCD	
into	your	computer

39

16x2	Character	Display	(1)
Architecture	of	the	16x2	character	display	peripheral

40

16x2	Character	Display	(2)
Port	declaration	of	
the	16x2	character	
LCD	module

module	character_lcd_0	(
//	Inputs
clk,
reset,
address,
chipselect,
read,
write,
writedata,

//	Bidirectionals
LCD_DATA,

//	Outputs
LCD_ON,
LCD_BLON,
LCD_EN,
LCD_RS,
LCD_RW,
readdata,
waitrequest

);

External	signals	of	the	
FPGA	connected	to	the	
16x2	character	display

41

Character	LCD	API
• Header	file:	altera_up_character_lcd.h
• Device	type:	alt_up_character_lcd_dev
• Function	prototypes:

– alt_up_character_lcd_dev*	alt_up_character_lcd_open_dev(const	
char*	name);

– void	alt_up_character_lcd_init(alt_up_character_lcd_dev	*lcd);
– int alt_up_character_lcd_set_cursor_pos (alt_up_character_lcd_dev

*lcd,	unsigned	x_pos, unsigned	y_pos);
– void	alt_up_character_lcd_string(alt_up_character_lcd_dev *lcd,	

const char	*ptr);
– ...

42

Test	the	new	Nios	II	system

• Write	a	simple	program	that	wtites	a	string	on	
the	16x2	character	display

43

References

• Altera	“Embedded	Peripherals	User	Guide,”	
ug_embedded_ip.pdf
– Section	I	- Chapter	2.	SDRAM	controller

• Zentel,	“A3V64S40FTP	datasheet”
• Altera,	“Using	the	SDRAM	Memory	on	Altera’s	
DE2	Board,”	tut_DE2_sdram_verilog.pdf with	
Verilog	Design

• Altera,	“16x2	Character	Display	for	Altera	DE2-
Series	Boards,”	Character_LCD.pdf

44

