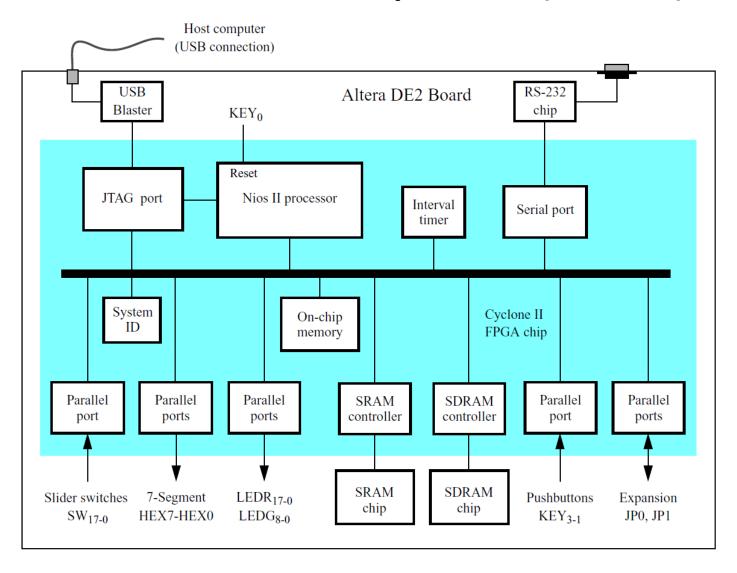
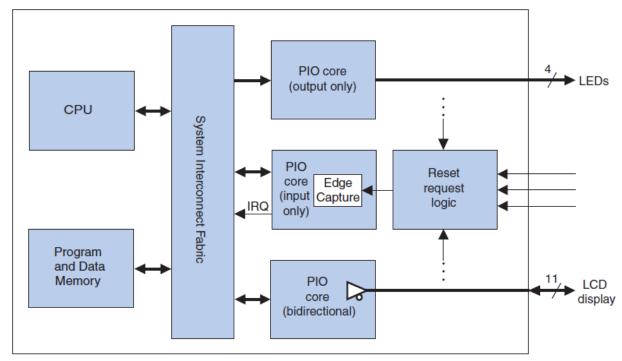
SISTEMI EMBEDDED

SOPC DE2 Basic Computer
Parallel port


Federico Baronti

Last version: 20170306

DE2 Basic Computer


- Computer provided by Altera University Program
 - Processor: Nios II/e
 - Memory: SDRAM, SRAM, On-chip memory
 - **− I/O**:
 - Parallel ports: red_LEDs, Green_LEDs, HEX3_HEX0, HEX7_HEX4, sliders, Pushbuttons, etc.
 - Other peripherals: JTAG UART, Serial_port, Interval_timer, sysid

DE2 Basic Computer (cont.)

Parallel port (1)

- Interface for general purpose I/O
 - Based on Altera's PIO core customized for DE-series boards
 - Controlling LEDs, acquiring data from Switches, etc.

Parallel port (2)

- 4x 32-bit memory-mapped registers
- n actual number of I/O pins

Table 2. Parallel Port register map				
Offset in bytes	Register name		Read/Write	Bits $(n-1)0$
0	data	Input	R	Data value currently on Parallel Port inputs.
		Output	W	New value to drive on Parallel Port outputs.
4	direction		R/W	Individual direction control for each I/O port.
				A value of 0 sets the direction to input; 1 sets
				the direction to output.
8	interruptmask		R/W	IRQ enable/disable for each input port. Set-
				ting a bit to 1 enables interrupts for the corre-
				sponding port.
12	edgecapture		R/W	Edge detection for each input port.

Parallel port (3)

Managing PIO in C program:

 Use of pointers to unsigned int initialized with PIO base memory address (we'll learn soon other ways!) red LEDs 0x10000000 0x10000000 red LEDs ptr 0x1000000C sliders sliders_ptr 0x10000040 0x10000040 0x1000004C

Parallel port (4)

- Why volatile attribute?
 - I/O registers may change even if the program does not modify them!
 - The peripheral hardware may modify their contents
 - Volatile tells the compiler do not make any optimization to the code involving an object declared with the volatile attribute

Parallel port (5)

Reading/Writing I/O registers:

```
*red_LED_ptr = *slider_ptr;
```

Putting into practice

- Let's start our first program with Nios II processor
 - Control the status of each DE2 red LED through the corresponding slider switch (LEDR $_i$ = Sw $_i$)