
SISTEMI	EMBEDDED

Computer	Organization
“Central”	Processing	Unit	(CPU)

Federico	Baronti Last	version:	20160511

Processing	Unit

• A	processor reads	program	instructions	from	
the	computer’s	memory	and	executes	them.	
This	includes	the	following	basic	phases:
– Fetching	and	decoding	the	instruction
– Executing the	instruction,	which	may	include:
• Reading	one	or	more	registers											(in	the	register	file)
• Doing	some	computation	(in	the	ALU)
• Accessing	the	memory
• Writing	a	register																																			(in	the	register	file)

da
ta
pa

th

Processor’s	building	blocks
• PC	provides	
instruction	address.

• Instruction	is	fetched	
into	IR

• Instruction	address	
generator	updates	
PC

• Control	circuitry	
interprets	instruction	
and	generates	
control	signals	to	
perform	the	actions	
needed.

A	digital	processing	system
• datapath

A	multi-stage	digital	processing	system
• datapath

Why	multi-stage?
• Processing	moves	from	one	stage	to	the	next	
in	each	clock	cycle

• Such	a	multi-stage	system	is	the	basis	for	
pipelined operation
– High-performance	processors	have	a	pipelined	
organization

– Pipelining	enables	the	execution	of	successive	
instructions	to	be	overlapped

• We	will	get	back	to	pipeline later.	Let’s	now	
focus	on	the	basics	of	the	multi-stage	
architecture	of	a	RISC-style	processor

Instruction	execution
• Pipelined	organization	is	most	effective	if	all	
instructions	can	be	executed	in	the	same	number	
of	steps.

• Each	step	is	carried	out	in	a	separate	hardware	
stage.

• Processor	design	will	be	illustrated	using	five	
hardware	stages.

• How	can	instruction	execution	be	divided	into	
five	steps?
– Let’s	start	from	some	representative	RISC	instructions

A	memory	access	instruction:	
Load	R5,	X(R7)

1. Fetch	the	instruction	and	increment	the	
program	counter.

2. Decode	the	instruction	and	read	the	contents	
of	register	R7	in	the	register	file.

3. Compute	the	effective	address	=	X	+	[R7].
4. Read	the	memory	source	operand.
5. Load	the	operand	into	the	destination	

register,	R5.

A	computational	instruction:
Add		R3,	R4,	R5

1. Fetch	the	instruction	and	increment	the	program	
counter.

2. Decode	the	instruction	and	read	registers	R4	and	
R5.

3. Compute	the	sum	[R4]	+	[R5].
4. No	action.
5. Load	the	result	into	the	destination	register,	R3.

• Stage	4	(memory	access)	is	not	involved	in	this	
instruction.

5-stage	Architecture	of	a
RISC	Processor	

1. Fetch	an	instruction	and	increment	the	program	
counter.

2. Decode	the	instruction	and	read	registers	from	
the	register	file.	

3. Perform	an	ALU	operation.	
4. Read	or	write	memory	data	if	the	instruction	

involves	a	memory	operand.	
5. Write	the	result	into	the	destination	register.		

• This	sequence	determines	the	hardware	stages	
needed.

Hardware	components:		Register	file

• A	2-port	register	
file	is	needed	to	
read	the	two	
source	registers	at	
the	same	time.

• It	may	be	
implemented	
using	a	2-port	
memory.

Hardware	components:	ALU	(1)

• Both	source	operands	
and	the	destination	
location	are	in	the		
register	file.

[RA]	and	[RB]	denote	
values	of	registers	that	
are	identified	by
addresses	A	and	B

new	[RC]	denotes	the
result	that	is	stored	to
the	register	identified
by	address	C

[RA]
new	[RC]

[RB]

Hardware	components:	ALU	(2)

• In	this	cas,	one	of	
the	source	
operands	is	the	
immediate	value	
in	the	IR.

[RA]

new	[RC]

A	5-stage	implementation	of
a	RISC	processor

• Instruction	processing	
moves	from	stage	to	stage	
in	every	clock	cycle,	
starting	with	fetch.

• The	instruction	is	decoded	
and	the	source	registers	
are	read	in	stage	2.

• Computation	takes	place	in	
the	ALU	in	stage	3.

A	5-stage	implementation	of
a	RISC	processor

• …

• If	a	memory	operation	is	
involved,	it	takes	place	in	
stage	4.

• The	result	of	the	
instruction	is	stored	in	
the	destination	register	
in	stage	5.

The	datapath	– Stages	2	to	5

• Register	file,
used	in	stages	2	and	5
– (Inter-stage	registers	RA,	RB,	RZ,	

RM,	RY	needed	to	carry	data	
from	one	stage	to	the	next)

• ALU	stage

• Memory	stage

• Final	stage	to	store	result
to	the	register	file

Memory	stage
• For	a	memory	

instruction:	
– RZ	provides	memory	

address,	and	MuxY
selects	read	data	to	be	
placed	in	RY.

– RM	provides	data	for	a	
memory	write	operation.

• For	a	calculation	
instruction:
– MuxY selects	[RZ]	to	be	

placed	in	RY.
• In	subroutine	calls	or	

exception	handling:
– Input	2	of	MuxY is	used	

(return	address	stored	in	
the	register	file)

Instruction	Fetch	Stage	(1)
• MuxMA selects	the	PC	
when	fetching	
instructions	(RZ	in	the	
Memory	Stage)

• The	Instruction	address	
generator increments	
the	PC	after	fetching	an	
instruction

• It	also	generates	branch	
and	subroutine	
addresses.

Instruction	Fetch	Stage	(2)
• When	an	instruction	is	
read,	it	is	placed	in	IR.

• The	control	circuitry	
decodes	the	
instruction.

• It	generates	the	control	
signals	that	drive	all	
units.

• The	Immediate	block	
extends	the	immediate	
operand	to	32	bits,	
according	to	the	type	
of	instruction.

Instruction	address	generator

• Connections	to	
registers	RY	and	RA	
are	used	to	support	
subroutine	call	and	
return	instructions

Example:		Add		R3,	R4,	R5
1. Memory	address	←[PC],	

Read	memory,	
IR←Memory data,
PC	← [PC]	+	4

2. Decode	instruction,
RA	← [R4],	RB	← [R5]

3. RZ	← [RA]	+	[RB]
4. RY	← [RZ]
5. R3	← [RY]

Example:		Load	R5,	X(R7)
1. Memory	address	← [PC],

Read	memory,	
IR	←Memory	data,
PC	←	[PC]	+	4

2. Decode	instruction,
RA	←	[R7]

3. RZ	←	[RA]	+	Immediate	
value	X

4. Memory	address	←[RZ],	
Read	memory,	
RY ←Memory	data

5. R5	←	[RY]

=	X

Example:		Store	R6,	X(R8)
1. Memory	address	←	[PC],	

Read	memory,
IR ←Memory	data,
PC	← [PC]	+	4

2. Decode	instruction,	
RA	←	[R8],	RB	←	[R6]

3. RZ	←	[RA]	+	Immediate	
value	X,	RM	←	[RB]

4. Memory	address	←[RZ],	
Memory	data	←	[RM],	
Write	memory

5. No	action

Unconditional	branch

1. Memory	address	←[PC],	Read	memory,
IR	←Memory	data,	PC	←[PC]	+ 4

2. Decode	instruction
3. PC	←	[PC]	+ Branch	offset
4. No	action
5. No	action

Conditional	branch:		
Branch_if_[R5]=[R6]		LOOP

1. Memory	address	←	[PC],	Read	memory,
IR	←Memory	data,	PC	←[PC]	+ 4

2. Decode	instruction,	RA	←	[R5],	RB	←[R6]
3. Compare	[RA]	to	[RB],	

If	[RA]	=	[RB],	then	
PC	←	[PC]	+ Branch	offset

4. No	action
5. No	action

Subroutine	call	with	indirection:		
Call_register	R9

1. Memory	address	←	[PC],	Read	memory,
IR	←Memory	data,	PC	←[PC]	+ 4

2. Decode	instruction,	RA	←	[R9]
3. PC-Temp	←	[PC],

PC	←	[RA]
4. RY	← [PC-Temp]
5. Register	LINK	← [RY]

Control	signals

• Select	multiplexer	inputs	to	guide	the	flow	of	
data

• Set	the	function	performed	by	the	ALU

• Determine	when	data	are	written	into	the	PC,	
the	IR,	the	register	file,	and	the	memory

Register	file	control	signals

R

I

Instruction
Format

Generated	by	decoding	
the	OPCODE	field	of	 the	
instruction	hold	 in	the	
IR	register	

ALU	control	signals

Generated	by	decoding	
the	OPCODE	field	of	 the	
instruction	hold	 in	the	
IR	register	

Analyzed	are	
relevant	when	
executing	a	branch	
instruction

Result	selection

Generated	by	decoding	
the	OPCODE	field	of	 the	
instruction	hold	 in	the	
IR	register	

Memory	access
• When	data	are	found	in	the	cache,	access	to	
memory	can	be	completed	in	one	clock	cycle.

• Otherwise,	read	and	write	operations	may	
require	several	clock	cycles	to	load	data	from	
main	memory	into	the	cache.

• A	control	signal	is	needed	to	indicate	that	
memory	function	has	been	completed	(MFC).		
E.g.,	for	step	1:

1.Memory	address	← [PC],	Read	memory,	Wait	for	
MFC,
IR	←Memory	data,	PC	←	[PC]	+ 4

Memory	and	IR	control	signals

MuxY

Memory	and	IR	control	signals

MuxY

1. Imm 16-bit	sign	
extended

2. Imm 16-bit	
unsigned	 extended

3. Imm 26-bit	in	CALL	
instr.	which	is	
special	extended

Control	signals	of	instruction	address	
generator

Control	signal	generation
• Circuitry	must	be	implemented	to	generate	control	
signals	so	actions	take	place	in	correct	sequence	and	at	
correct	time.

• There	are	two	basic	approaches:
hardwired	control	and	microprogramming

• Hardwired control involves	implementing	circuitry	that
considers	step	counter,	IR,	ALU	result,	and	external	
inputs.

• Step	counter	keeps	track	of	execution	progress,
one	clock	cycle	for	each	of	the	five	steps	described	
(unless	a	memory	access	takes	longer	than	one	cycle).

Hardwired	generation	of	control	
signals

E.g.
RF_wtite=T5	&	(ALU	|	Load	|	Call);
PC_enable =	T1&MFC	|	T3	&	BR;

CISC	processors

• CISC-style	processors	have	more	complex	
instructions.

• The	full	collection	of	instructions	cannot	all	be	
implemented	in	a	fixed	number	of	steps.

• Execution	steps	for	different	instructions	do	not	
all	follow	a	prescribed	sequence	of	actions.

• Hardware	organization	should	therefore	enable
a	flexible	flow	of	data	and	actions	to	
accommodate	CISC.

Hardware	organization	for	a	CISC	
computer Main	difference	between	

5-stage	RISC	organization	
and	CISC	organization,	
where	a	datapath cannot	
easily	be	identifiedHold	 temporary	results	

during	 instruction	
executions	

Bus
• An	example	of	an	interconnection	network.
• When	functional	units	are	connected	to	a	
common	bus,	tri-state drivers	are	needed.

Register	Enable

A	3-bus	interconnection	network

1. Memory	address	←	[PC],	
Read	memory,	Wait	for	
MFC,	IR	←	Memory	data,	
PC	←	[PC]	+ 4

2. Decode	instruction
3. R5	←	[R5]	+ [R6]

Example	1:	Add	R5,	R6

A	3-bus	interconnection	network
1. Memory	address	←	[PC],	Read	

memory,	Wait	for	MFC,	
IR	←	Memory	data,
PC	←	[PC]	+ 4

2. Decode	instruction
3. Memory	address	←	[PC],	Read	

memory,	Wait	for	MFC,	
Temp1	←	Memory	data,
PC	←	[PC]	+ 4

4. Temp2	←	[Temp1]	+ [R7]
5. Memory	address	←	[Temp2],	

Read	memory,	Wait	for	MFC,	
Temp1	←	Memory	data

6. Temp1	←[Temp1]	AND	[R9]
7. Memory	address	←	[Temp2],	

Memory	data	←	[Temp1],	Write	
memory,	Wait	for	MFC

Example	2:	And	X(R7),	R9

X	is	stored	as	a	second	word	of	the	
instruction

References

• C.	Hamacher,	Z.	Vranesic,	S.	Zaky,	N.	Manjikian
"Computer	Organization	and	Embedded	Systems,”	
McGraw-Hill	International	Edition
– Chapter	V:	Basic	Processing	Unit

