
SISTEMI	EMBEDDED

Nios II	processor
Building	process
Code	optimisation

Federico	Baronti Last	version:	20160502



The	Build	Process
.h.c,	.cpp .h.s

.		.		.
CO

M
PI
LE
R

AS
SE
M
BL
ER

.elf

.cmd,	.x
LOCATOR

Linker	command	 file
(Physical	memory	addresses) Executable	file

PRE-PROCESSOR

TRANSLATOR

Compilation	unit
.c,	.cpp

.o

Startup	codeRelocatable
executable	file.elf

LINKER

Pre-compiled	libraries
(Archive	of	object	files)

.a .o

.o

PRE-PROCESSOR

TRANSLATOR

Compilation	unit
.s

Source
files



Compiler	(1)

• Compilation	unit:	a	single	text	file	obtained	
from	the	related	source	file	after	being	
processed	(file	inclusion,	string	
manipulation,…)	by	the	pre-processor

• A	Compiler translates	a	high-level	language	as	
C	into	a	list	of	OPCODES	(instructions)	specific
for	the	used	processor
– In	embedded	system	programming,	we	use
a	cross-compiler,	as	the	tool	runs	on	a	different	
processor	architecture	than	the	generated	code



Compiler/Assembler	(1)

• The	result	of	the	compilation/assembling	is	an	
object (.o)	file	(binary	file)

• An	object	file	consists	of	a	header,	which	
describes	the	contained	sections and	some	
tables.	The	basic	sections are:
– text (containing	the	code)
– data (containing	initialized	static/global	variables)
– bss (containing	non-initialized	static/global	
variables,	which	will	be	initialized	to	zero	by	the	
startup	code)



Compiler/Assembler	(2)

• Three	tables	are	generated:	
– The	tables	of	symbols (global	and	external),	which	
contain	the	names	and	locations	(section	and	
offset)	of	all	the	functions	and	variables	
referenced	in	the	source	file
• Rows	of	the	external	symbol	table	are	incomplete,	
because	these	functions	and/or	variables	are	defined	in	
a	different	file

– The	table	for	linking
• It	is	up	to	linker/locator	to	complete	the	missing	
information	and	to	transform	a	relative	section	address	
to	a	physical	memory address



Linker	and	Loader	(1)

• Combine	all	the	object	file	generating	a	new	
object	file	where	the	table	of	symbols	does	
not	contain	unresolved	names	(otherwise	an	
error	is	generated;	an	error	occurs	also	if	a	
symbol	is	defined	in	more	than	one	object	file)

• The	generated	object	file	is	a	relocatable copy	
of	the	program.	All	the	sections	start	from	
address	zero	at	this	point



Linker	and	Loader	(2)

• A	physical	memory	address	must	be	assigned	
to	the	start	address	of	each	section

• This	mapping	is	determined	by	a	linker	script
(or	command	file)
– It	contains	for	each	section	the	corresponding	
starting	physical	memory	address



Startup	code
• Small	portion	of	assembly	code	(crt0.s)	which	prepares	
the	processor	for	executing	the	remainder	part	of	the	
program.	It	basically	does	the	following:
1. Disables	all	the	interrupts
2. Initializes	all	the	initialized	variables	with	their	initialized	

values
3. Initializes	with	zero	all	the	variables	in	the	bss section
4. Initializes	the	stack	pointer
5. Call	main
6. After	“Call	main”	is	present	an	infinite	loop,	in	case	the	

main function	will	return



Make	and	makefile
• The	build	process	requires	executing	the	compile	
command	for	all	the	source	files	and	then	invoking	the	
linker	tool

• This	process	can	be	automatized	using	the	make tool.	
Its	input	is	the	makefile file,	which	is	a	list	of	rules:
– target:				prerequisite

command
– The	target is	what	is	going	to	be	produced	by	the	rule.	The	
prerequisite are	the	files	that	must	exist	before	the	target	
can	be	created	using	the	shell	command

– A	target	is	recreated	only	if	the	prerequisite	files	are	more	
recent	than	the	current	version	of	the	target	file

• The	makefile can	be	autogenerated by	the
Integrated	Developing	Environment	(IDE)



Memory	mapping

Corresponds	to	physical	
memories	created	with	Qsys.	

Corresponds	to	virtual	memories	
where	the	linker	place	code,	data,	

stack,	heap,...

Mapping



Automatic	code	placement
• The	reset	handler	code is	always	placed	at	the	
base	of	the	.reset partition.	The	general	exception	
funnel code	is	always	the	first	code	in	the	section	
that	contains	the	exception	address.	By	default,	
the	remaining	code	and	data	are	divided	into	the	
following	output	sections:
– .text												All	remaining	code
– .rodata The	read-only	data
– .rwdata Read-write	data
– .bss Zero-initialized	data



Manually-controlled	placement

• In	your	program	source	code,	you	can	specify	a	
target	memory	section	for	each	piece	of	code.	In	
C	or	C++,	you	can	use	the	section	attribute.	
– This	attribute	must	be	placed	in	a	function	prototype;	
you	cannot	place	it	in	the	function	declaration	itself

/* data should be initialized when using the section attribute */
int foo __attribute__ ((section (”my_section"))) = 0;

void bar (void) __attribute__ ((section (".sdram.txt")));
void bar (void)
{
foo++;
}



Stack	and	heap	placement
• By	default,	the	heap	and	stack	are	placed	in	the	same	memory	partition	as	

the	.rwdata section
• The	stack	grows	downwards	(toward	lower	addresses)	from	the	end	of	the	

section
• The	heap	grows	upwards	from	the	last	used	memory	in	the	.rwdata

section
• You	can	control	the	placement	of	the	heap	and	stack	by	manipulating	BSP	

settings
• By	default,	the	HAL	performs	no	stack	or	heap	checking.	This	makes	

function	calls	and	memory	allocation	faster,	but	it	means	that	malloc()	(in	
C)	and	new	(in	C++)	are	unable	to	detect	heap	exhaustion

• You	can	enable	run-time	stack	checking	by	manipulating	BSP	settings.	
With	stack	checking	on,	malloc()	and	new()	can	detect	heap	exhaustion

• Stack	checking	has	performance	costs.	If	you	choose	to	leave	stack	
checking	turned	off,	you	must	code	your	program	so	as	to	ensure	that	it	
operates	within	the	limits	of	the	available	heap	and	stack	memories



Controlling	code	size	(1)

• Very	important	to	reduce	memory	costs
• The	HAL	environment	includes	only	the	
features	used	by	the	application
– If	the	Nios II	hardware	system	contains	exactly	the	
peripherals	used	by	the	application,	the	HAL	
contains	only	the	drivers	necessary	to	control	the	
hardware



Controlling	code	size	(2)

• Available	options	to	reduce	code	footprint	(size)
– Compiler	optimization

• Some	optimization	flags	which	control	the	trade-off	
between	increasing	speed	and	reducing	memory	use

– Reduced	device	driver
• Lighter	device	driver	version	(slower	and	less	functions)



Controlling	code	size	(3)
• Available	options	to	reduce	code	footprint	(size)
– Reduce	the	File	Descriptor	Pool

• The	file	descriptors	that	access	character	mode	devices	and	
files	are	allocated	from	a	file	descriptor	pool.	It	can	be	changed	
through	a	BSP	setting.	The	default	is	32

– Use	/dev/null
• At	boot	time,	standard	input,	standard	output,	and	standard	
error	are	all	directed	towards	the	null	device,	that	is,	/dev/null.	
After	all	drivers	are	installed,	these	streams	are	redirected	to	
the	channels	configured	in	the	HAL

• The	footprint	of	the	code	that	performs	this	redirection	is	
small,	but	you	can	eliminate	it	entirely	by	selecting	null	for	
stdin,	stdout,	and	stderrwhen	stdio is	not	used

• You	can	control	the	assignment	of	stdin,	stdout,	and	stderr
channels	by	manipulating	BSP	settings



Controlling	code	size	(4)

• Available	options	to	reduce	code	footprint	(size)
– Use	the	Small	newlib C	Library.	Some	limitations:

• No	floating-point	support	for	printf()	family	of	routines
• No	support	for	scanf()	family	of	routines
• No	support	for	seeking
• No	support	for	opening/closing	FILE	*.	Only	pre-opened	stdout,	
stderr,	and	stdin are	available

• No	buffering	of	stdio.h output	routines
• No	stdio.h input	routines
• …

– Use	UNIX-Style	File	I/O	fully	omitting	the	C	library
• Standard	I/O	C	functions	can	be	emulated	by	application	code



Controlling	code	size	(5)

• Available	options	to	reduce	code	footprint	(size)
– Use	the	Minimal	Character-Mode	API

• If	you	can	limit	your	use	of	character-mode	I/O	to	very	
simple	features,	you	can	reduce	code	footprint	by	using	
the	minimal	character-mode	API
• This	API	includes	the	following	functions:

– alt_printf()
– alt_putchar()
– alt_putstr()
– alt_getchar()

• These	functions	are	appropriate	if	the	program	only	needs	
to	accept	command	strings	and	send	simple	text	
messages.


