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Exceptions	and	Interrupts

• Exception:	a	transfer	of	control	away	from	a	
program’s	normal	flow	of	execution,	caused	by	
an	event,	either	internal	or	external	to	the	
processor,	which	requires	immediate	
attention

• Interrupt:	an	exception	caused	by	an	explicit	
request	signal	from	an	external	device	
(hardware/interrupt	exception)



Exception	types	(1)

• Reset	exception:	occurs	when	the	Nios II	
processor	is	reset.	Control	is	transferred	to	the	
reset	address specified	when	generating	the	
Nios II	processor	core

• Break	exception:	occurs	when	the	JTAG	debug	
module	requests	control.	Control	is	
transferred	to	the	break	address specified	
when	generating	the	Nios II	processor	core



Exception	types	(2)

• Instruction-related	exception:	occurs	when	
one	of	several	internal	conditions	occurs.	
Control	is	transferred	to	the	general	exception	
address specified	when	generating	the	Nios II	
processor	core	(Software	exception)

• Interrupt	exception:	occurs	when	a	peripheral	
device	signals	a	condition	requiring	service.	
Control	is	transferred	to	the	general	exception	
address (or	to	a	specific	address	in	case	of	
vectored	interrupt	handling)



Break	exceptions
• A	hardware	break	is	a	transfer	of	control	away	
from	a	program’s	normal	flow	of	execution	for	
the	purpose	of	debugging

• Software	debugging	tools	can	take	control	of	the	
Nios II	processor	via	the	JTAG	debug	module	to	
implement	debug	and	diagnostic	features,	such	
as	breakpoints	and	watchpoints

• The	processor	enters	the	break	processing	state	
under	one	of	the	following	conditions:
– The	processor	executes	the	break	instruction	
(software	break)

– The	JTAG	debug	module	asserts	a	hardware	break



Instruction-related	exceptions

• Occur	during	execution	of	Nios II	instructions
– Trap	instruction:	software-invoked	exception.	
Useful	to	“call”	OS	services	without	knowing	the	
routine	run-time	addresses

– Break	Instruction
– Illegal	instruction
– Unimplemented	instruction
– Division	error
– …



Interrupt	exceptions

• A	peripheral	device	can	request	an	interrupt	
by	asserting	an	interrupt	request	(IRQ)	signal.	
IRQs	interact	with	the	Nios II	processor	
through	an	interrupt	controller

• The	Nios II	processor	can	be	configured	with	
one	of	the	following	interrupt	controller	
options:
– The	internal	interrupt	controller
– The	external	interrupt	controller	interface



Example	of	a	Nios II	System

External	Interrupt	
Controller



Nios	II	Processor	Core	Architecture



Reset	signals



Some	definitions
• Exception	(interrupt) latency: the	time	elapsed	
between	the	event	that	causes	the	exception	
(assertion	of	an	interrupt	request) and	the	
execution	of	the	first	instruction	at	the	handler	
address

• Exception	(interrupt) response	time:	the	time	
elapsed	between	the	event	that	causes	the	
exception	(assertion	of	an	interrupt	request) and	
the	execution	of	non-overhead	exception	code,	
which	is	specific	to	the	exception	type	(device)
– May	include	the	time	needed	to	save	general	purpose	
registers	and	to	determine	the	cause	of	the	exception	
(for	NON	VECTORED	interrupts)	



Internal	interrupt	controller

• Non-vectored	exception	controller	to	handle	
all	exception	types

• Each	exception,	including	hardware	interrupts	
(IRQ31-0),	causes	the	processor	to	transfer	
execution	to	the	same	general	exception	
address

• An	exception	handler	at	this	address	
determines	the	cause	of	the	exception	and	
dispatches	an	appropriate	exception	routine



External	interrupt	controller	interface	(1)

• External	Interrupt	Controller	(EIC)	can	be	used	to	
shorten	exception	response	time

• EIC	can	monitor	and	prioritize	IRQ	signals	and	
determine	which	interrupt	to	present	to	the	Nios II	
processor.	An	EIC	can	be	software-configurable

• When	an	IRQ	is	asserted,	the	EIC	provides	the	following	
data	to	the	Nios II	processor:
– The	requested	handler	address	(RHA)
– The	Requested Interrupt	Level	(RIL);	the	interrupt	is	taken	
only	when	the	RIL	is	greater	than	the	IL	field	(6-bit)	in	the	
status	register

– The	RequestedRegister Set	(RRS)
– Requested NonMaskable Interrupt	(RNMI)	mode



External	interrupt	controller	interface	(2)
• Requested	register	set	is	one	of	the	
implemented	shadow	register	sets
– This	way	the	context	switch	overhead	is	
eliminated	(useful	for	high-critical	interrupts)

– Less	critical	interrupts	can	share	the	same	shadow	
register	set
• No	problem	if	interrupt	pre-emption	cannot	occur	
among	these	interrupts
– Same	priority	level	or	nested	interrupts	are	disabled

• Otherwise	the	ISR	must	save	its	register	set	on	entry	
and	restore	it	on	exit



External	interrupt	controller	interface	(3)

• The	Nios II	processor	EIC	interface	connects	to	a	single	
EIC,	but	an	EIC	can	support	a	daisy-chained	
configuration

• Multiple	EICs	can	monitor	and	prioritize	interrupts
• The	EIC	directly	connected	to	the	processor	presents	
the	processor	with	the	highest-priority	interrupt	from	
all	EICs	in	the	daisy	chain

• An	EIC	component	can	support	an	arbitrary	level	of	
daisy-chaining,	potentially	allowing	the	Nios II	
processor	to	handle	an	arbitrary	number	of	prioritized	
interrupts



External	interrupt	controller	interface (4)
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31. Vectored Interrupt Controller Core

Core Overview
The vectored interrupt controller (VIC) core serves the following main purposes:

■ Provides an interface to the interrupts in your system

■ Reduces interrupt overhead

■ Manages large numbers of interrupts

The VIC offers high-performance, low-latency interrupt handling. The VIC prioritizes 
interrupts in hardware and outputs information about the highest-priority pending 
interrupt. When external interrupts occur in a system containing a VIC, the VIC 
determines the highest priority interrupt, determines the source that is requesting 
service, computes the requested handler address (RHA), and provides information, 
including the RHA, to the processor.

The VIC core contains the following interfaces:

■ Up to 32 interrupt input ports per VIC core

■ One Avalon® Memory-Mapped (Avalon-MM) slave interface to access the internal 
control status registers (CSR)

■ One Avalon Streaming (Avalon-ST) interface output interface to pass information 
about the selected interrupt

■ One optional Avalon-ST interface input interface to receive the Avalon-ST output 
in systems with daisy-chained VICs

Figure 31–1 outlines the basic layout of a system containing two VIC components.

To use the VIC, the processor in your system needs to have a matching Avalon-ST 
interface to accept the interrupt information, such as the Nios® II processor's external 
interrupt controller interface.

Figure 31–1. Sample System Layout
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The characteristics of each interrupt port are configured via the Avalon-MM slave 
interface. When you need more than 32 interrupt ports, you can daisy chain multiple 
VICs together.

The VIC core provides the following features:

■ Separate programmable requested interrupt level (RIL) for each interrupt

■ Separate programmable requested register set (RRS) for each interrupt, to tell the 
interrupt handler which processor register set to use

■ Separate programmable requested non-maskable interrupt (RNMI) flag for each 
interrupt, to control whether each interrupt is maskable or non-maskable

■ Software-controlled priority arbitration scheme

The VIC core is SOPC Builder-ready and integrates easily into any SOPC Builder-
generated system. For the Nios II processor, Altera provides Hardware Abstraction 
Layer (HAL) driver routines for the VIC core. Refer to “Altera HAL Software 
Programming Model” on page 31–10 for HAL support details.

Functional Description
Figure 31–2 shows a high-level block diagram of the VIC core.

External Interfaces
The following sections describe the external interfaces for the VIC core.

clk
clk is a system clock interface. This interface connects to your system’s main clock 
source. The interface’s signals are clk and reset_n.

Figure 31–2. VIC Block Diagram
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Nios II	registers	(1)
• General-purpose	registers	(r0-r31)

…	



Nios II	registers	(2)
• Control	registers accessible	only	by	the	special	instructions	 rdctl and	

wrctl that	are	only	available	in	supervisor	mode



Status	register	(1)



Status	register	(2)



Other relevant control	registers	(1)

• The	estatus register holds	a	saved	copy	of	the	
status	register	during	nonbreak exception	
processing

• The	bstatus register	holds	a	saved	copy	of	the	
status	register	during	break	exception	processing

• The	ienable register controls	the	handling	of	
internal	hardware	interrupts

• The	ipending register indicates	the	value	of	the	
interrupt	signals	driven	into	the	processor



Other relevant control	registers	(2)

• When	the	extra	exception	information	option	
is	enabled,	the	Nios II	processor	provides	
information	useful	to	system	software	for	
exception	processing	in	the	exception and	
badaddr registers	when	an	exception	occurs



Masking	and	disabling	interrupts

status	register

with	Internal	Interrupt	Controller



Exception	processing	flow	(1)

• In	response	to	an	exception,	the	Nios II	
processor	does	the	following	actions:
– Save	the	status register	into	the	estatus register
– Clear	PIE	bit	in	the	status register	
– Save	PC	(return	address)	to	ea register	
– Transfer	execution	to	the:
• general	exception	handler (w/	Internal	Interrupt	
Controller)
• specific	exception	handler (w/	External	Interrupt	
Controller)



Exception	processing	flow	(2)
• The	general	exception	handler is	a	routine	that	
determines	the	cause	of	each	exception and	
then	dispatches	an	exception	routine	to	respond	
to	the	specific	exception	(software	or	hardware)

• The	general	exception	handler is	found	at	the	
general	exception	address
– At	run	time	this	address	is	fixed,	and	software	cannot	
modify	it

– Programmers	do	not	directly	access	exception	vectors	
and	can	write	programs	without	awareness	of	this	
address	thanks	to	HAL



Determining	the	exception	cause

• Instruction-related	(software)	exception
– cause filed	of	the	exception register	(if	present)	
stores	the	info	on	what	instruction	has	caused	the	
exception

– If	non-present,	the	handler	must	retrieve	the	
instruction	that	has	caused	the	exception



/*	With	an	internal	interrupt	controller,	check	for	interrupt	exceptions.	With	an	external	interrupt	
*	controller,	ipending is	always	0,	and	this	check	can	be	omitted.	*/
if	(estatus.PIE ==	1	and	ipending !=	0)	 handle	hardware	interrupt
else	{

/*	Decode	exception	from	instruction	*/
decode	instruction	at [ea]-4
if	(instruction	is	trap)	handle	trap	exception
else	if	(instruction	is	load	or	store)	handle	misaligned	data	address	exception
else	if	(instruction	is	branch,	bret,	callr,	eret,	jmp,	or	ret)

handle	misaligned	destination	address	exception
else	if	(instruction	is	unimplemented)	handle	unimplemented	instruction	exception
else	if	(instruction	is	illegal)	handle	illegal	instruction	exception
else	if	(instruction	is	divide)	{

if	(denominator	==	0)	handle	division	error	exception
else	if	(instruction	is	signed	divide	and	numerator	==	0x80000000

and	denominator	==	0xffffffff)
handle	division	error	exception

}
/*	Not	any	known	 exception	*/
else		handle	unknown	 exception
}

Pseudo	C	code	for	dispatiching	software	exceptions
(w/o	excepetion register)	and	hardware	interrupts
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Hardware	interrupts	processing	flow	w/	EIC

• Software	exceptions	are	handled	as	w/	IIC
• When	the	EIC	interface	presents	an	interrupt	to	the	
Nios II	processor,	the	processor	uses	several	criteria	to	
determine	whether	or	not	to	take	the	interrupt:
– Nonmaskable interrupts:	the	processor	takes	any	NMI	as	
long	as	it	is	not	processing	a	previous	NMI

– Maskable interrupts:	the	processor	takes	a	maskable
interrupt	if	maskable interrupts	are	enabled	(PIE	=	1)	and	if	
the	requested	interrupt	level	is	higher	than	that	of	the	
interrupt	currently	being	processed	(if	any)
• However,	if	shadow	register	sets	are	implemented,	the	processor	
takes	the	interrupt	only	if	the	interrupt	requests	a	register	set	
different	from	the	current	register	set,	or	if	the	register	set	
interrupt	enable	flag	(status.RSIE)	is	set



Nested	exceptions	(1)

• Nested	exceptions	can	occur	under	the	
following	circumstances:
– An	exception	handler	enables	maskable interrupts
– An	EIC	is	present	and	
• an	NMI	occurs	or
• the	processor	is	configured	to	keep	maskable interrupts	
enabled	when	taking	an	interrupt

– An	exception	handler	triggers	an
instruction-related	exception



Nested	exceptions	(2)
• By	default,	Nios II	processor	disables	maskable
interrupts	when	it	takes	an	interrupt	request

• To	enable	nested	interrupts,	the	ISR	itself	must	
re-enable	interrupts	after	the	interrupt	is	taken

• Alternatively,	to	take	full	advantage	of	nested	
interrupts	with	shadow	register	sets,	system	
software	can	set	the	config.ANI flag	in	the	config
control	register.	When	config.ANI	=	1,	the	Nios II	
processor	keeps	maskable interrupts	enabled	
after	it	takes	an	interrupt



Interrupt	Service	Routine	(ISR)

• The	HAL	provides	an	enhanced	application	
programming	interface (API)	for	writing,	
registering	and	managing	ISRs
– This	API	is	compatible	with	both	internal	and	
external	hardware	interrupt	controllers

• For	back	compatibility	Altera	also	supports	a	
legacy hardware	interrupt	API
– This	API	supports	only	the	IIC
– A	custom	driver	written	prior	to	Nios II	version	9.1	
uses	the	legacy	API



HAL	API
• Both	interrupt	APIs	include	the	following	types	of	
routines:
– Routines	to	be	called	by	a	device	driver	to	register	an	ISR
– Routines	to	be	called	by	an	ISR	to	manage	its	environment
– Routines	to	be	called	by	BSP	or	application	code	to	control	
ISR	behavior

• Both	interrupt	APIs	support	the	following	types	of	
BSPs:
– HAL	BSP	without	an	RTOS
– HAL-based	RTOS	BSP,	such	as	a	MicroC/OS-II	BSP

• When	an	EIC	is	present,	the	controller’s	driver	provides	
functions	to	be	called	by	the	HAL



HAL	API	selection
• When	the	SBT	creates	a	BSP,	it	determines	whether	the	
BSP	must	implement	the	legacy	interrupt	API
– Each	driver	that	supports	the	enhanced	API	publishes	this	
capability	to	the	SBT	through	its
<driver	name>_sw.tcl file

• The	BSP	implements	the	enhanced	API	if	all	drivers	
support	it;	otherwise	it	uses	the	legacy	API
– Altera	drivers	written	for	the	enhanced	API,	also	support	
the	legacy	one

– Devices	whose	interrupts	are	not	connected	to	the	Nios II	
processor	are	ignored



Example	DE2	Basic	Computer
• system.h

/*
* System configuration
*/
#define ALT_DEVICE_FAMILY "CYCLONEII"
#define ALT_IRQ_BASE NULL
#define ALT_LEGACY_INTERRUPT_API_PRESENT
#define ALT_LOG_PORT "/dev/null"
#define ALT_LOG_PORT_BASE 0x0
#define ALT_LOG_PORT_DEV null
#define ALT_LOG_PORT_TYPE ""
#define ALT_NUM_EXTERNAL_INTERRUPT_CONTROLLERS 0
#define ALT_NUM_INTERNAL_INTERRUPT_CONTROLLERS 1
#define ALT_NUM_INTERRUPT_CONTROLLERS 1

avalon_parallel_port_driver	and	up_avalon_rs232_driver	
do	not	support	enhanced	API



Enhanced HAL	Interrupt	API

• Using	the	enhanced	HAL	API	to	implement	ISRs	requires	
performing	the	following	steps:
– Write	the	ISR	that	handles	hardware	interrupts	for	a	specific	device
– Ensure	that	the	main	program	registers	the	ISR	with	the	HAL	by	calling	

the	alt_ic_isr_register()	function	(this	function	also	enables	the	
hardware	interrupts)



Legacy HAL	Interrupt	API
• alt_irq_register()
• alt_irq_disable()
• alt_irq_enable()
• alt_irq_disable_all()
• alt_irq_enable_all()
• alt_irq_interruptible()
• alt_irq_non_interruptible()
• alt_irq_enabled()

• Using	the	legacy	HAL	API	to	implement	ISRs	requires	performing	the	
following	steps:
– Write	the	ISR	that	handles	hardware	interrupts	for	a	specific	device
– Ensure	that	the	main	program	registers	the	ISR	with	the	HAL	by	calling	the	

alt_irq_register()	function
– alt_irq_register()	enables	also	hardware	interrupts	by	calling	

alt_irq_enable_all()



HAL	exception	handling	w/	IIC
General	exception	funnel

Software	
exception	funnel

Hardware	
exception	funnel



Harwdare	interrupt	funnel

In	the	HAL	funnel,	
hardware	interrupt	0	has	
the	highest	priority,	and	
31	the	lowest	priority

After	the	ISRi execution,
ipending register is	
scanned	again	from	0,	so	
that	higher-priority	
interrupts	are	always	
processed	before	lower-
priority	interrupts

ISR	code	must	clear	the	
associated	peripheral’s	
interrupt	condition



Call	ISRi

• Interrupt	table	definition	(Legacy	HAL	
Interrupt	API)
struct {
void	(*handler)(void*,	alt_u32);
void	*context;	}	alt_irq[32];

• Call	ISRi
alt_irq[i].handler(alt_irq[i].context,	i);



When	writing	an	ISR...
• Keep	it	as	simple	as	possible.	Defer	intensively	tasks	to	the	

application	code.
• ISRs	run	in	a	restricted	environment.	A	large	number	of	the	

HAL	API	calls	are	not	available	from	ISRs
– For	example,	accesses	to	the	HAL	file	system	are	not	permitted

• As	a	general	rule,	never	include	function	calls	that	can	block	
for	any	reason	(such	as	waiting	for	a	hardware	interrupt)
– Avoid	using	the	C	standard	library	I/O	API,	because	calling	these	

functions	can	result	in	deadlock	within	the	system,	that	is,	the	
system	can	become	permanently	blocked	in	the	ISR

– Do	not	call	printf()	from	within	an	ISR	unless	you	are	certain	that	
stdout is	mapped	to	a	non-interrupt-based	device	driver

– Otherwise,	printf()	can	deadlock	the	system,	waiting	for	a	
hardware	interrupt	that	never	occurs	because	interrupts	are	
disabled



Putting	into	practice (1)

• Write	a	program	that	reads	the	pushbutton	activity	
exploting	the	related	hardware	interrupt	and	turns	
on/off	some	LEDs

• #include	<sys/alt_irq.h>	to	use	Interrupt	HAL	API	
• ISR	prototype

– static	void	pushbutton_ISR(void*	context,	unsigned	long	id);



Putting	into	practice (2)
• Make	GREEN	leds	blink	using	the	Interval	Timer	and	
the	sys_clk	HAL w/	2	s	period
– Map	sys_clk	HAL to	the	Interval_timer	peripheral	using	the	
BSP	editor

– Define	a	variable	of	alt_alarm type	(you	need	to	include	
"sys/alt_alarm.h " header	file)

– Start	the	alarm	using	the	alt_alarm_start()	function	
passing	as	parameter	the	pointer	to	the	callback	function	
that	makes	the	leds	blink
• Prototype	of	the	callback	function:
alt_u32	my_alarm_callback(void*	context)

• The	return	value	is	the	time	that	will	pass	before	the	next	alarm	
event

– Handle	the	GREEN_LEDS	Parallel	Port	using	the	related	
HAL;	see	"altera_up_avalon_parallel_port.h " header	for	
how	to	use	it
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