
SISTEMI	EMBEDDED

System	Interconnect	Fabric

Federico	Baronti Last	version:	20160419

System	Interconnect	Fabric

• Interconnect	and	logic	resources to	manage	
whole	connectivity	among	all	components	in	
an	Altera	SoPC system

• Is	automatically	generated	by	Qsys
– Components	must	comply	with	the	standardized
Avalon®	interfaces,	which	are	specialized	for:
• Reading	and	writing	registers	and	memory
• Streaming	high-speed	data
• Controlling	off-chip	devices

Example	of	a	SoPC system
Custom	logic	can	interact	with	
a	Computer	system by:
• an	Avalon interface,	so	
that	it	can	be	part	of	the	
SoPC

• a	generic interface,	which
can	be	connected to	a	PIO	
peripheral inside	the	SoPC

Avalon	interfaces	(1)

• Avalon	Memory	Mapped	Interface	(Avalon-MM)
– An	address-based	read/write	interface	typical	of	
master–slave	connections

• Avalon	Streaming	Interface	(Avalon-ST)
– Supports	unidirectional	flow	of	data,	including	
multiplexed	streams,	packets,	and	DSP	data

• Avalon	Interrupt	Interface
– An	interface	that	allows	components	to	signal	events	
to	other	components

Avalon	interfaces	(2)
• Avalon	Clock	Interface

– An	interface	that	drives	or	receives	clocks	(all	Avalon	
interfaces	are	synchronous)

• Avalon	Reset	Interface
– An	interface	that	provides	reset	connectivity

• Avalon	Conduit	Interface
– An	interface	type	that	accommodates	individual	signals	or	
groups	of	signals	that	do	not	fit	into	any	of	the	other	Avalon	
interfaces

• Avalon	Tri-State	Conduit	Interface	(Avalon-TC)	
– An	interface	to	support	connections	to	off-chip	peripherals.	
Multiple	peripherals	can	share	pins	through	signal	
multiplexing,	reducing	the	pin	count	of	the	FPGA	(and	the	
number	of	traces	on	the	PCB)

Example	of	component	
interconnections	within	
a	Nios	II	system

Avalon	interfaces	(3)
• Avalon	interfaces	use	properties to	describe	their	
behavior.	E.g.	the	clockRate property	of	the	Avalon	
Clock	interface	provides	the	frequency	of	a	clock	signal.

• Each	of	the	Avalon	interfaces	defines	a	number	of	
signal	roles	and	their	behavior.	
– Many	signal	roles	are	optional,	allowing	component	
designers	the	flexibility	to	select	only	the	signal	roles	
necessary	to	implement	the	required	functionality.

– With	the	exception	of	Avalon	Conduit	interfaces,	each	
interface	may	include	only	one	signal	of	each	signal	role.

– Active-low	signal	alternatives	are	permitted	for	many	
signal	roles.	

Avalon	Memory	Mapped	(MM)	(1)

• Interconnect	fabric	based	on	Avalon	MM	
interfaces	supports
– Any	number	of	master	and	slave	components

• The	master-to-slave	relationship	can	be	one-to-one,	one-to-
many,	many-to-one,	or	many-to-many

– Connection	to	both	on- and	off-chip	devices	
(microprocessors,	memories,	UARTs,	DMAs,	timers,…)

– Master	and	slaves	of	different	data	widths
– Components	operating	in	different	clock	domains
– Components	using	multiple	Avalon-MM	ports

Avalon	Memory	Mapped	(MM)	(2)
Example	of	a
Avalon	MM-based	
interconnect	fabric	system

Avalon	Memory	Mapped	(MM)	(3)
Example	of	an	AvalonMM	slave	component
(Write	operationon	a	PIO	peripheral)

Avalon MM	Signals (1)

• Each	signal	has	a	role
• An	Avalon	MM	may	contain	only	a	restricted	
number	of	available	signals

• Common	signal	roles	are:
– address,	writedata
– chipselect (chipselect_n),	 read	(read_n),	
write(write_n),…

– readdata
– waitrequest (waitrequest_n)

Avalon MM	Signals (2)

• Address (Master	->	Slave)
– For	masters,	the	address	signal	represents	a	byte	
address.	The	value	of	the	address	must	be	aligned	to	
the	data	width.	To	write	to	specific	bytes	within	a	data	
word,	the	master	must	use	the	byteenable signals.	

– For	slaves,	the	interconnect	translates	the	byte	
address	into	a	word	address	in	the	slave’s	address	
space	so	that	each	slave	access	is	for	a	word	of	data	
from	the	perspective	of	the	slave.	For	example,	
address=	0	selects	the	first	word	of	the	slave	and	
address	1	selects	the	second	word	of	the	slave.

Avalon MM	Signals (3)
• byteenable/byteenable_n (Master	->	Slave)
• Example	for	a	32	bits	slave:
– byteenable operation
– 1111 writes	full	32	bits	
– 0011 writes	lower	2	bytes	
– 1100	 writes	upper	2	bytes	
– 0001 writes	byte	0	only	
– 0010	 writes	byte	1	only	
– 0100	 writes	byte	2	only	
– 1000	 writes	byte	3	only	

Avalon MM	Properties

• Specified	when	a	component	is	inserted	in	a	
Qsys Library

• Describes	interface	behavior	with	regard	to:
– Latency
– Pipeline
– Burst
– Read	and	Write	setup	and	hold	times

Functions	of	Avalon	MM	fabric

• Address	Decoding
• Datapath	Multiplexing
• Wait	State	Insertion
• Pipelined	Read	Transfers
• Arbitration	for	Multimaster	Systems
• Burst Adapters

Address	decoding	(1)
• Address	decoding	logic	forwards	appropriate	
addresses	to	each	slave

• Address	decoding	logic	simplifies	component	
design	in	the	following	ways:
– The	system	interconnect	fabric	selects	a	slave	
whenever	it	is	being	addressed	by	a	master.	Slave	
components	do	not	need	to	decode	the	address	to	
determine	when	they	are	selected

– Slave	addresses	are	properly	aligned	to	the	slave	
interface

– Changing	the	system	memory	map	does	not	require	to	
edit	HDL	manually

Address	decoding	(2)
• Example	of	address	decoding	in	case	of
1	master	and	2	slave

• The	address	decoding	logic	is	controlled	by	the	
Base	address setting	in	Qsys

Data	path	multiplexing
• Drives	the	writedata signal	from	the	granted	master	to	the	selected	

slave,	and	the	readdata signal	from	the	selected	slave	back	to	the	
requesting	master

• Example	of	the	data	path	multiplexing	logic	for	1	master	and	2	slaves

• In	Qsys the	generation	of	data	path	multiplexing	logic	is	specified	using	
the	connections	panel	on	the	System	Contents	menu

Wait	state	insertion
• Wait	states	extend	the	duration	of	a	transfer	by	
one	or	more	clock	cycles

• Wait	state	insertion	logic	accommodates	the	
timing	needs	of	each	slave	or	the	wait	due	to	
arbitration	in	a	multi-master	system

• System	interconnect	fabric	also	inserts	wait	states	
in	cases	when	slave	read and	write signals	have	
specific	setup	or	hold	time	requirements

Pipelined	read	transfer
• The	Avalon-MM	interface	supports	pipelined	read	
transfers,	allowing	a	pipelined	master to	start	multiple	
read	transfers	in	succession	without	waiting	for	the	
prior	transfers	to	complete

• Pipelined	transfers	allow	master-slave	pairs	to	achieve	
higher	throughput,	even	though	the	slave	requires	one	
or	more	cycles	of	latency	to	return	data	for	each	
transfer

• Qsys generates	logic	to	handle	pipeline	latency	based	
on	the	properties	of	the	master	and	slaves	in	the	
system.	When	configuring	a	system	in	Qsys,	there	are	
no	settings	that	directly	control	the	pipeline	
management	logic	in	the	system	interconnect	fabric

Read/Write	transfers

Pipelined	w/	waitrequest	and	fixed	wait	states	(readWaitTime	=2)	.	Signals at the	slave	interface

Fixed	wait	states (readWaitTime	=	1;	writeWaitTime	=	2).	Signals at the	slave	interface

Generated
by	the	slave

Interrupts	(1)

• In	systems	where	components	have	interrupt	
request	(IRQ)	sender	interfaces,	the	system	
interconnect	fabric	includes	interrupt	
controller	logic

• A	separate	interrupt	(controller) router is	
generated	for	each	interrupt	receiver

• The	interrupt	controller	aggregates	IRQ	signals	
from	all	interrupt	senders,	and	maps	them	to	
user-specified	values	on	the	receiver	inputs

Interrupts	(2)

• Individual	Requests	IRQ	Scheme

Router

Within	the	System	
Interconnect	Fabric

Within	the	Nios	II
processor

Reset	distribution
• Qsys generates	the	logic	to	drives	the	reset	pulse	to	all	
components

• The	system	interconnect	fabric	distributes	the	reset	
signal	conditioned	for	each	clock	domain
– The	duration	of	the	reset	signal	is	at	least	one	clock	period

• The	system	interconnect	fabric	asserts	the	system-wide	
reset	in	the	following	conditions:
– The	global	reset	input	to	the	Qsys/system	is	asserted
– Any	component	asserts	its	resetrequest signal	(eg.	
Watchdog)

• The	global	reset	and	reset	requests	are	ORed together.	
This	signal	is	then	synchronized	to	each	clock	domain	
associated	to	an	Avalon-MM	port,	which	causes	the	
asynchronous	resets	to	be	de-asserted	synchronously

Reset	Synchronizer

SNUG Boston 2003 Asynchronous & Synchronous Reset
Rev 1.3 Design Techniques - Part Deux

20

7.0 Reset synchronizer
Guideline: EVERY ASIC USING AN ASYNCHRONOUS RESET SHOULD INCLUDE A
RESET SYNCHRONIZER CIRCUIT!!
Without a reset synchronizer, the usefulness of the asynchronous reset in the final system is void
even if the reset works during simulation.

The reset synchronizer logic of Figure 9 is designed to take advantage of the best of both
asynchronous and synchronous reset styles.

Figure 9 - Reset Synchronizer block diagram

An external reset signal asynchronously resets a pair of master reset flip-flops, which in turn
drive the master reset signal asynchronously through the reset buffer tree to the rest of the flip-
flops in the design. The entire design will be asynchronously reset.

Reset removal is accomplished by de-asserting the reset signal, which then permits the d-input of
the first master reset flip-flop (which is tied high) to be clocked through a reset synchronizer. It
typically takes two rising clock edges after reset removal to synchronize removal of the master
reset.

Two flip-flops are required to synchronize the reset signal to the clock pulse where the second
flip-flop is used to remove any metastability that might be caused by the reset signal being
removed asynchronously and too close to the rising clock edge. As discussed in section 5.4,
these synchronization flip-flops must be kept off of the scan chain.

Clifford	E.	Cummings,	Don	Mills,	Steve	Golson	“Asynchronous	&	Synchronous	 Reset	Design	
Techniques	- Part	Deux”,	available	at	www.sunburst-design.com

Component	development	flow
• Specification	and	definition
– Define	the	functionality	of	the	component
– Determine	component	interfaces,	such	as	Avalon-MM,	
Avalon-ST,	interrupt,	or	other	interfaces

– Determine	the	component	clocking	requirements;	what	
interfaces	are	synchronous	to	what	clock	inputs

– If	you	want	a	microprocessor	to	control	the	component,	
determine	the	interface	to	software,	such	as	the	register	
map

• Implement	the	component	in	VHDL	or	Verilog	HDL
• Import	the	component	into	Qsys
– Use	the	component	editor	to	create	a	_hw.tcl file	that	
describes	the	component

– Instantiate	the	component	into	a	Qsys system

References

• Altera,	“Avalon	Interface	Specifications,”	
mnl_avalon_spec.pdf

