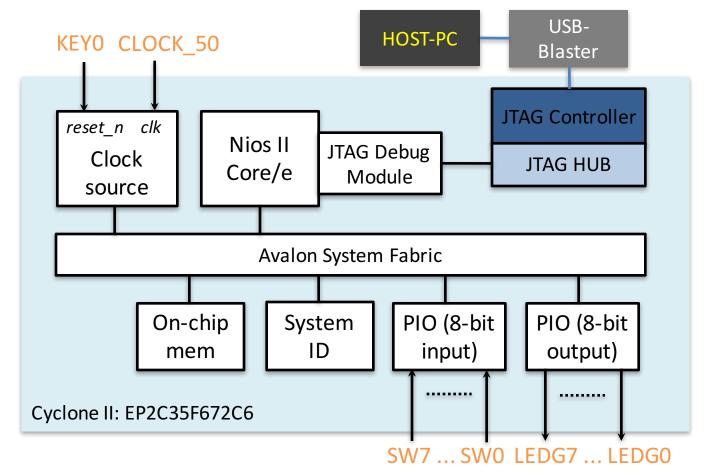
SISTEMI EMBEDDED

Building a Nios II <u>Computer</u> from scratch

Federico Baronti

Last version: 20160321

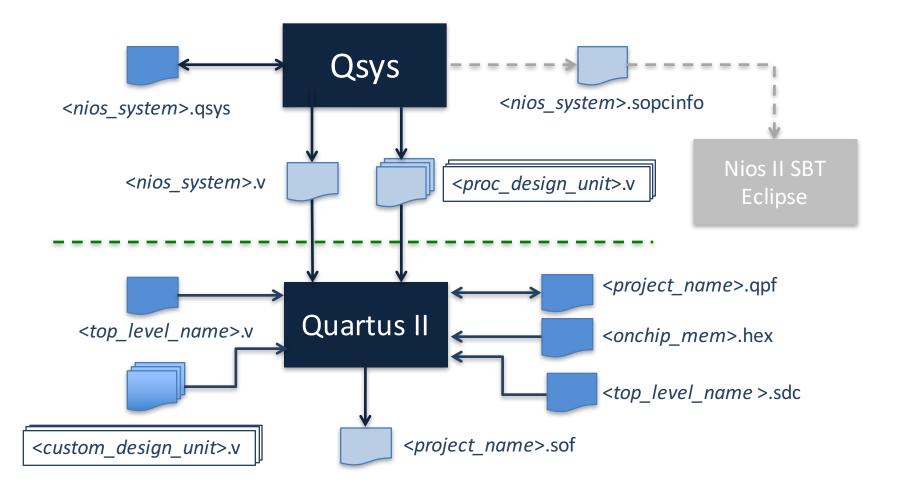
Introduction

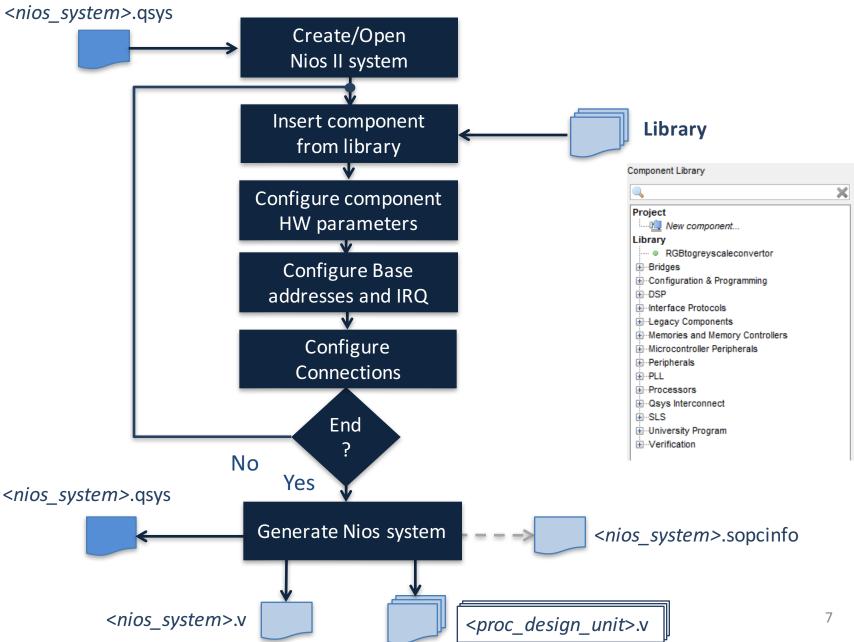

- <u>Problem</u>:
 - Build a (NIOS II) Computer tailored to application needs
- <u>Solutions:</u>
 - Use library cores and custom HDL code
 - Use specific design tools (Qsys) to help assemble the system
 - Components (CPUs, memory (controllers), peripherals,...) selected from Altera, other vendors or custom libraries
 - Connections (<u>Avalon System Interconnect Fabric</u>) are generated automatically by the tool
 - Need for standard interfaces
- DE2_basic_ and DE2_media_ computers are pre-built Nios II systems with different choices for the proc. (economy and fast) and the peripherals available in the University Program package

Avalon System Fabric

- Overview of Avalon standard interfaces:
 - Clock
 - Reset
 - Interrupt
 - Memory-Mapped (master and slave)
 - Streaming (source and sink)
 - Conduit

Example: First Nios System


Handles slider switches and LEDs through PIO peripherals


First Nios Computer components

- CPU (simplest, *i.e.*, *economy* version) with JTAG Debug Module
- On-chip memory for program and data (8 KB)
- 2 PIOs
 - Input for reading slider switches (8 bit)
 - Output for driving green LEDs (8 bit)
- System ID Peripheral for computer identification

Nios II Hardware Flow

Qsys Flow

Guided example (1)

- Create a new project in Quartus II
 - Select FPGA: Cyclone II EP2C35F672C6N
- Launch Qsys tool
- Define the Nios_system components
 - Clock source: *clk* (it is added automatically)
 - Nios II Proc.: nios2_proc
 - Choose the economy version of the NiosII proc. (NiosII/e) and the Level 1 for the JTAG Debug Module
 - On-chip Memory: onchip_memory
 - PIO: green_leds
 - Output for driving LEDS
 - PIO: sliders
 - Input for reading slider switches status
 - System ID Peripheral: sysid (ID = 1!)

Qsys main window

🚣 Qsys File Edit System View Tools Help	Component instance name	Base address	×
Component Library	System Contents Address Mar Clock Settings Project Settings Instance Parameters System Inspector HDL Example Gener Image: System Contents Address Mar Clock Settings Instance Parameters System Inspector HDL Example Gener Image: System Contents Use Conn Hame Description Export Clock Image: System Contents Clack_0 Clock Source Clock Input Clock Input Clock Clo	C C C	En
Bidges and Adapters Group Strain St	Configure internal connections Configure internal connections Decide signals to be brought (exported) to the Osys system boundary	tS	4
Messages	Path		_

CPU choice

- Choose the most suited processor core
- 3 variants:
 - Economy
 - Standard
 - Fast
- Different features
 - Trade-off performance-cost

NIO MegaCore	s II Processor			About Document
Parameter Settings				
	ches and Memory Interfaces	> Advanced Features $>$	MMU and MPU Settings 🔰 JTA	6 Debug Module > Custon Instru
Core Nias II				
Select a Nios II core:		O NHA A HA	O bille a 1167	
	Nios II/e	ONios II/s	ONios II/f	l .
Nios II	RISC 32-bit	RISC 32-kit	RISC 32-bit	
Selector Guide	32° 0 1	Instruction Cache	Instruction Cache	
Family: Cyclone II		Branch Prediction	Branch Prediction	
		Hardware Multiply	Hardware Multiply	
f _{system:} 50.0 MHz		Hardware Divide	Hardware Divide Barnel Shifter	
cipulat D			Data Cache	
			Dynamic Branch Prediction	
Performance at 50.0 M		Up to 25 DMIPS	Up to 51 DMPS	
Logic Usage	600-700 LEs	1200-1400 LEs	1400-1800 LEs	
Mamory Usage	Two M4Ks (prieguly.)	Two M4Ks + cache	Three M4Ks + cache	
Hardware Multiply				
riarumare malipiy.	accuado Multipliers	Hardware Divisio		
Reset Yector: M	emory:	V Offset: 0x		
Exception Vector: Me	morpi	🗸 Offset: 0,2		1
Exception vector. we	nury.	✓ Officer. UK2		
C NULL				
THE 19 MIXU				
	when using an operating operating			
Fast TLB Miss Exception	in Vector: Memory:	1	Offset 0x0	
Include MPU				
🗥 Warning Reset rec	tor and Exception vector cann	tot be set until memory devices	are connected to the Nios II process	sor

At least one memory must be present in the Qsys system in order to configure the **Reset** and **Exception** addresses

Additional peripherals

PIO (Parallel I/O) -	pio_0 🛛 🔀
PIO (Pa atters_avalor	rallel I/O)
Block Diagram	
reset avalon	pio_U cik reset si external_connection
* Basic Settings	
Width (1-32 bits):	8
Direction	○ Bidir
	⊙ logut
	🔿 InOut
	Output
Output Port Reset Value	Dx00000000000000000
* Output Register	
Enable individual bit	setting/clearing
🕆 Edge capture registe	ır
Synchronously capt	ure
Edge Type:	RISING V
Enable bit-clearing f	or edge capture register
 Interrupt 	
🔄 Generate IRQ	
IRG Type:	LEVBL 🔽
Edge: Interrupt CPU whe	en any unwesked IC pin is logic brue many unmesked bit in the edge-capture visikie when synchronous capture is anabled
Test bench wiring	
Hardwire PIO inputs	in test bench
Drive inputs to:	Dx0000000000000000
🕕 Inte: pio_0: PIO inputs	are not hardwired in test bench. Undefined values
< U	>
	Cancel Finish

System ID Peripheral attera_avalon_sysid	
Block Diagram Show signals (lk clk clock reset reset avalon attera_avalon_sysid	Vertical Description System ID: 1 Time stamp: 1365584360 A unique ID is assigned every time the system is generated.

On-chip memory

- Define the organization of the on chip-memory
 - Type (ROM, RAM)
 - Size
 - Word length
- Initialization file: onchip_mem.hex

On-Chip Me aters_svalor_onc	emory (RAM or ROM) hp_memory2 Documentation					
* Block Diagram						
	onchip_memory2_0 clock = dk1 avaion = s1 reset = reset1					
Memory type						
Туре:	RAM (Witable)					
Dust-port access						
Read During Write Mode:	DONT_CARE V					
Block type:	Auto 🗸					
* Size						
Data width:	32 👻					
Total memory size:	4096 bytes					
Minimize memory black us	age (may impact fmax)					
* Read latency						
Slave st Latency:	1 🛩					
Slave s2 Latency:	1 💌					
 Memory initialization 						
🔽 Initialize memory content						
Enable non-default initialization file						
User created initialization file	onchip memory2_0					
Enable In-System Memory						
Instance D:	NONE					

Guided example (2)

• Configure internal connections

- Route *clk* from Clock Source component to the other components
- Create reset network
 - "Route" reset signals from Clock Source and JTAG Debug Module (within the Nios II proc.) components to the other components
 - Can be done automatically using <u>Create Global Reset Network</u> command (System menu)
- Link the Avalon Memory-Mapped Interfaces:
 - data_master (Nios II proc.), jtag_debug_module (Nios II proc.), s1 (onchip_memory), s1 (PIO: sliders, green_leds), control_slave (sysid)
 - instruction_master (Nios II proc.), jtag_debug_module (Nios II proc.), s1 (onchip_memory)

Guided example (3)

Export external connections

 – Sliders and green_leds PIOs have <u>conduit</u> interfaces, the related signals (external_connection) must be routed to the Qsys system boundary

Assign base addresses

- Manually to each component with slave Memory-Mapped Interfaces (pay attention to avoid overlaps!)
- Assign Base Addresses (from the System menu)

Guided example (4)

We are now ready to generate the Qsys system and go back to Quartus II

Use	Connections	Name	Description	Export	Clock	Base	End
\checkmark		🗖 cik	Clock Source				
		clk_in	Clock Input	clk			
	$\phi \longrightarrow$	clk_in_reset	Reset Input	reset			
		clk	Clock Output	Double-click to export	clk		
		clk_reset	Reset Output	Double-click to export			
1		nios2_proc	Nios II Processor				
	$ \bullet \longrightarrow$	clk	Clock Input	Double-click to export	clk		
	$ \bullet \bullet \bullet \longrightarrow$	reset_n	Reset Input	Double-click to export	[clk]		
		data_master	Avalon Memory Mapped Master	Double-click to export	[clk]	IRQ (IRQ 31
		instruction_master	Avalon Memory Mapped Master	Double-click to export	[clk]		
	≻───≺	jtag_debug_module_reset	Reset Output	Double-click to export	[clk]		
	$ \phi \phi \longrightarrow$	jtag_debug_module	Avalon Memory Mapped Slave	Double-click to export	[clk]	■ 0x4800	0x4fff
	×	custom_instruction_master	Custom Instruction Master	Double-click to export			
V		green_leds	PIO (Parallel I/O)				
	$ \bullet + + + \to$	clk	Clock Input	Double-click to export	clk		
	$ \diamond + + \diamond \longrightarrow$	reset	Reset Input	Double-click to export	[clk]		
	$ \phi \phi \longrightarrow$	s1	Avalon Memory Mapped Slave	Double-click to export	[clk]		0x500f
		external_connection	Conduit	green_leds_external_connection			
V		⊟ sliders	PIO (Parallel I/O)				
	$ + + + + \rightarrow$	clk	Clock Input	Double-click to export	clk		
	$ \diamond + + \diamond \longrightarrow$	reset	Reset Input	Double-click to export	[clk]		
	♦ ♦ >	s1	Avalon Memory Mapped Slave	Double-click to export	[clk]		0x501f
		external_connection	Conduit	sliders_external_connection			
V		🗆 sysid	System ID Peripheral				
	$ + + + + \rightarrow$	clk	Clock Input	Double-click to export	clk		
	$ \diamond + + \diamond \longrightarrow$	reset	Reset Input	Double-click to export	[clk]		
	$ \phi \phi \longrightarrow$	control_slave	Avalon Memory Mapped Slave	Double-click to export	[clk]	0x5020	0x5027
>		onchip_memory	On-Chip Memory (RAM or ROM)				
	$ \bullet + + + + \rightarrow$	clk1	Clock Input	Double-click to export	clk		
	$ \bullet \bullet \longrightarrow$	s1	Avalon Memory Mapped Slave	Double-click to export	[clk1]	n 0x2000	0x3fff
	$ \bullet \bullet \bullet \longrightarrow$	reset1	Reset Input	Double-click to export	[clk1]		

Guided example (6)

- Back to Quartus II
 - Import Qsys system into Quartus project. Do one of the followings:
 - <u>Method I</u>: Add the .qip file stored in *nios_system*>/synthesis to the project
 - <u>Method II</u>: Add the .qsys file to the project
 - Create the root module of the project
 - Include the Nios_system module as hierarchical block (Verilog)
 - Import pin assignment from de2.qsf
 - Compile the project to make the hardware ready

Guided example (7)

- Integrating Qsys system into Quartus II project
 - <u>Method I</u>: Add the (Quartus II file) .qip file stored in <*nios_system*>/synthesis to the project
 - .qip file is created when generating the Qsys system together with the .sopcinfo and the HDL files
 - It lists all the files necessary for compilation in Quartus II, including the references to the HDL files generated by Qsys

Guided example (8)

- Integrating Qsys system into Quartus II project
 - Method II: Add the .qsys file to project
 - The Qsys system is **now** (re)generated by Quartus II at each compilation
 - The generated HDL files are stored at a different path than those generated directly by Qsys

- db/ip/<nios_system>

- Note that the sysid timestamp changes at each compilation in Quartus II
- The BSP must be regenerated using the new sopcinfo file after each compilation, even if we have not made any change to the Qsys system!

Guided example (7)

Project root module

```
// my_DE2_first_computer.v
```

```
module my_DE2_first_computer(
    //input
    CLOCK_50,
    KEY,
    SW,
    //output
    LEDG
);
    input CLOCK_50;
```

input [0:0] KEY; input [7:0] SW;

```
output [7:0] LEDG;
```

// Add the nios_system instance

// The instance template can be copied from Qsys HDL example tab

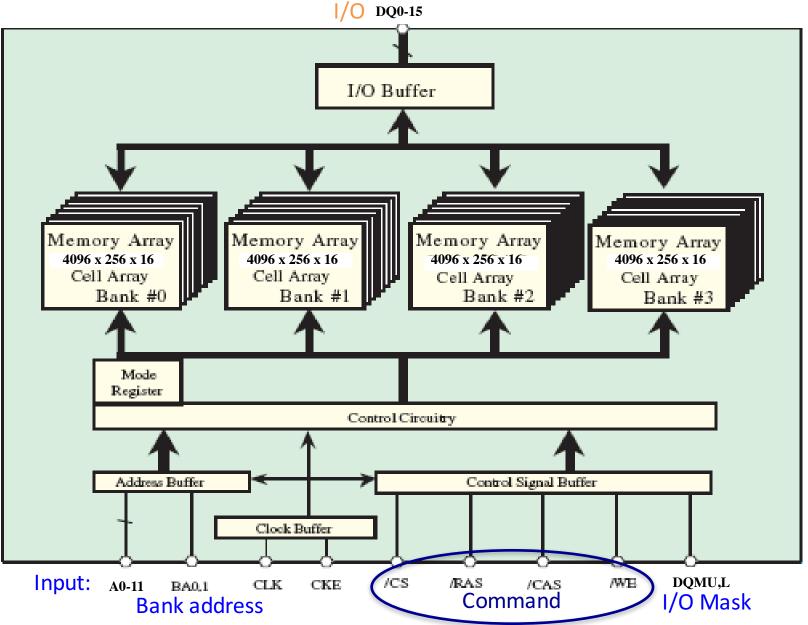
Testing First Nios System (1)

- Write a program that makes the GREEN LEDS to be controlled by the SLIDERS SWITCHES
- If successful, generate the hex file to initialize the on-chip memory. Recompile the Quartus project and reprogram the FPGA. <u>Your program should run automatically!</u>
- To generate the hex file from elf. Open the Nios 2 Command Shell and navigate to the Eclipse project folder. Customize the following command:

elf2hex --record=4 --width=32 --base=<*onchip_memory* **base** address> --end=<*onchip_memory* **end** address> --input=<*eclipse_project_name*.elf> --output=../../Hardware/onchip_mem.hex

Testing First Nios System (1a)

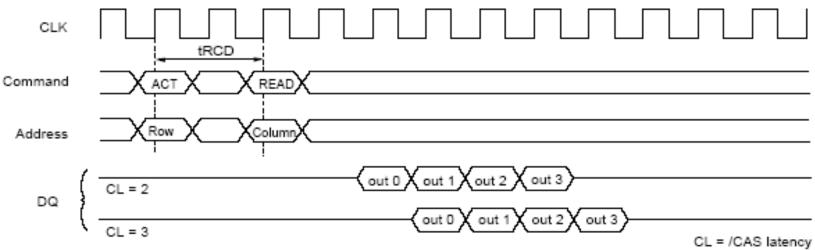
- Enrich the *First Nios System* w/ 2 additional PIOs properly configured to control the **push buttons** (w/ edge capture capability) and the **HEX3-HEX0 7-seg displays** available on the DE2 board.
 - Make the ID of this new computer equal to 2
 - Test the computer running the LED rotation, the Fast Click and the Week day programs
 - Recall that the push button signal is low when the switch is pressed and that a led of the 7-seg display is ON when driven low
 - Try to guess what's inside the parallel port peripheral connected to the HEX 7-seg displays used in the DE2 Basic Computer


Testing First Nios System (2)

- Go back to Qsys, add the JTAG-UART peripheral (Library/Interface Protocols/Serial), regenerate the Nios system and compile the design again (top level entry does not need to be changed)
- Write a program that say Hello to the host together w/ the system ID and timestamp

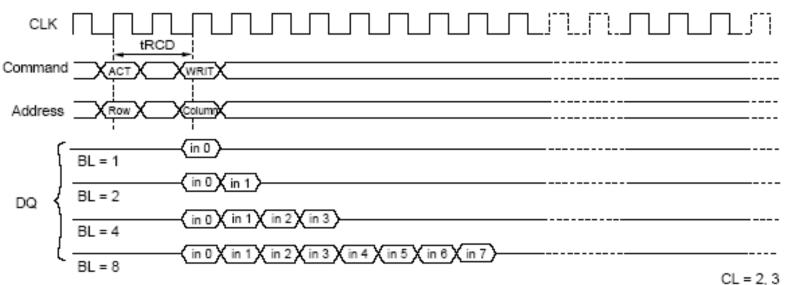
Testing First Nios System (3)

- Allocated on chip memory is not enough!
 - JTAG-UART device driver requires more memory than the one available
 - In a future lesson, we will learn some techniques to reduce the memory footprint of our software
 - Now, we can:
 - try to enlarge the on-chip memory. <u>Note that</u> EP2C35 FPGA has 105 x M4Kb=52.5 KB; some M4K blocks are used to implement the proc. and the JTAG Debug Module
 - add the SDRAM Controller to our Qsys system to use the 8 MB SDRAM memory (Zentel A3V64S40ETP-G6) present on the DE2 board


SDRAM memory (1)

24

SDRAM memory (2)


Read

Burst Length = 4

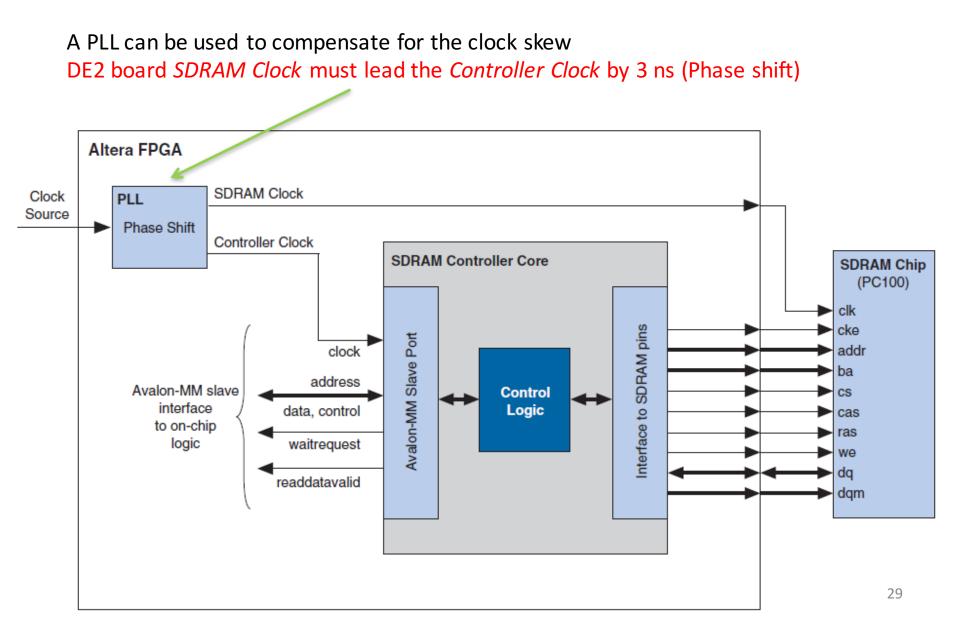
25

Write

SDRAM memory (2)

Parameter	Symbol	Ver	Unit	Note	
Farameter	Symbol	-6	-7	Onit	Note
Row active to row active delay	trrd(min)	12	14	ns	1
RAS to CAS delay	trcd(min)	18	21	ns	1
Row precharge time	trp(min)	18	21	ns	1
Row active time	tras(min)	40	42	ns	1
Row active time	tras(max)	100	100	us	
Row cycle time	tRC(min)	58	63	ns	1
Last data in to row precharge	tRDL(min)	2	2	CLK	2
Col. address to col. address delay	tccd(min)	1	1	CLK-	
Last data in to new col. address delay	tco∟(min)	1	1	CLK	2
Last data in to burst stop	tвo∟(min)	1	1	CLK	2
Mode register set cycle time	tmrd(min)	2	2	CLK	
Refresh interval time	tref(max)	64	64	ms	
Auto refresh cycle time	tarfc(min)	60	70	ns	26

SDRAM memory (3)


	χ ι	Ĭ	-6	,)	-7				
Paramet	Symbol	Min	Max	Min	Max	Unit	Note		
CLK cycle time	CAS latency=3	tcc (3)	6	1000	7	1000		1	
CLK cycle time	CAS latency=2	tcc (2)	10	1000	10	1000	ns	I	
CLK to valid output delay	CAS latency=3	tsac (3)		5.5		6	ns	1,2	
	CAS latency=2	tsac (2)		6		6	115	1,2	
Output data hold time	CAS latency=3	tон (3)	2.5		2.5		ns	2	
	CAS latency=2	tон (2)	2.5		2.5		115	2	
CLK high pulse width	tсн	2.5		2.5		ns	3		
CLK low pulse width		tc∟	2.5		2.5		ns	3	
Input setup time		tsı	1.5		1.5		ns	3	
Input hold time		tнı	1		1		ns	3	
Transition time of CLK		ts∟z	0		0		ns	2	
	CAS latency=3	tour		5.5		6			
CLK to output in Hi-Z	CAS latency=2	tsнz		6		6	ns		

SDRAM memory (4)

Initialization sequence

- 4. After stable power and stable clock, wait 200us.
- 5. Issue precharge all command (PALL).
- 6. After tRP delay, set 2 or more auto refresh commands (REF).
- 7. Set the mode register set command (MRS) to initialize the mode register.

SDRAM controller (1)

SDRAM controller (2)

• Library/Memory and Memory Controllers/SDRAM Interfaces

La SDRAM Controller - new_sdram_controller_0							
SDRAM Controller attera_avalon_new_sdram_control	oller Documentation						
Block Diagram Show signals new_sdram_controller_0 clk clock reset reset avalon wire conduit era_avalon_new_sdram_controller	Memory Profile Timing Data Width Bits: 16 • Architecture Chip select: 1 • Banks: 4 • Address Width Row: 12 Column: 8 Generic Memory model (simulation only) Include a functional memory model in the system testbench Memory Size = 8 MBytes 4194304 x 16 64 MBits						

SDRAM controller (3)

• Library/Memory and Memory Controllers/SDRAM Interfaces

SDRAM Controller - new_sdram_controller_0 SDRAM Controller attera_avalon_new_sdram_controller			Documentation		
Block Diagram Show signals new_sdram_controller_0 clk clock	Memory Profile Timing CAS latency cycles::	 1 2 3 		•	
reset s1 avalon wire conduit era_avalon_new_sdram_controller	Initialization refresh cycles: Issue one refresh command every: Delay after powerup, before initialization: Duration of refresh command (t_rfc): Duration of precharge command (t_rp): ACTIVE to READ or WRITE delay (t_rcd): Access time (t_ac):	2 15.625 200.0 70.0 20.0 20.0	us = 64. us ns ns ns	m	s/4096
	Access time (t_ac): Write recovery time (t_wr, no auto precharge):	5.5	ns		

SDRAM controller (4)

- Instantiate and configure the component for SDRAM memory
- Set Qsys internal connection: clock, reset and Avalon MM slave
- Export signals towards the memory chip (Conduit interface)
- Assign Base Address

								1 · · · ·	
V					sdram_controller	SDRAM Controller			
	•		+	\longrightarrow	clk	Clock Input	Double-click to export	clk	
	- + -	++	-	>	reset	Reset Input	Double-click to export	[clk]	
		∔ +		\longrightarrow	s1	Avalon Memory Mapped Slave	Double-click to export	[clk]	0x00ff_ffff
					wire	Conduit	sdram_controller		

• Move Reset and Exception addresses to freshly created SDRAM controller

SDRAM controller (5)

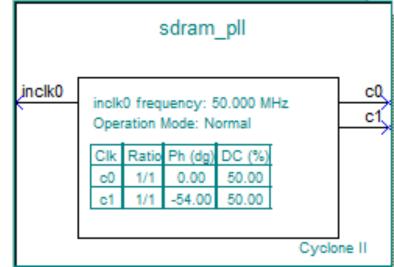
- Generate the Qsys system (mandatory if using the .qip file) and go back to Quartus II
- Update the Qsys system instance (you can use the template in the HDL Example tab of Qsys)
- Update the module interface to include the external SDRAM controller signals
 - Connect them to new Qsys system instance
 - Create the PLL to generate the SDRAM clock

SDRAM controller (6)

// my_DE2_first_computer.v

module my DE2 first computer(//input CLOCK_50, KEY, SW, //output LEDG // Memory (SDRAM) DRAM DQ, DRAM_ADDR, DRAM_BA_1, DRAM BA O, DRAM_CAS_N, DRAM_RAS_N, DRAM_CLK, DRAM CKE, DRAM_CS_N, DRAM_WE_N, DRAM_UDQM, DRAM_LDQM

SDRAM controller (6)


input		CLOCK_50;
input	[0:0]	KEY;
input	[7:0]	SW;
output	[7:0]	LEDG;
// Memor	y (SDRAM)	
inout	[15:0]	DRAM_DQ;
output	[11:0]	DRAM_ADDR;
output		DRAM_BA_1;
output		DRAM_BA_0;
output		DRAM_CAS_N;
output		DRAM_RAS_N;
output		DRAM_CLK;
output		DRAM_CKE;
output		DRAM_CS_N;
output		DRAM_WE_N;
output		DRAM_UDQM;
output		DRAM_LDQM;

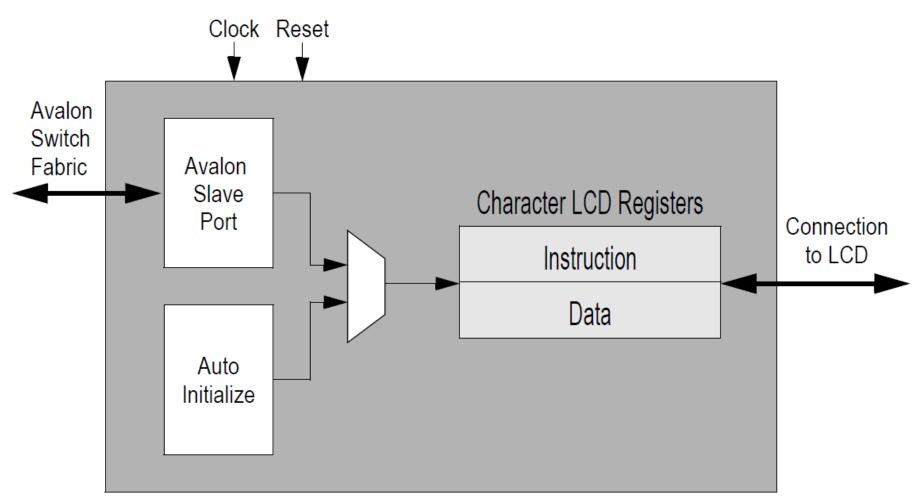
// Add the nios_system instance

// The instance template can be copied from Qsys HDL example tab
// (Generate) and Connect the SDRAM Clock (DRAM_CLK)
endmodule

SDRAM Clock

- DRAM_CLK must lead CLOCK_50 by 3 ns
- Require instantiating and configuring a PLL
 - Can be done using the MegaWizard Plug-in Manager
 [I/O Library]
 - c0 and c1 have the same frequency as inclok0, i.e.,
 50 MHz but are shifted sdram_pll
 eachother by 3 ns
- Integrate the PLL into the top module
- Compile the design

Putting into practice


- Create a new project in Eclipse and see if the new computer works with the SDRAM memory
- If ok, re-enable the stdio functions and write a simple program that use them

– Work on the Blocking/Non blocking I/O operations

• When done, go ahead to integrate the LCD into your computer

16x2 Character Display (1)

Architecture of the 16x2 character display peripheral

16x2 Character Display (2)

External signals of the FPGA connected to the 16x2 character display Port declaration of
the 16x2 charactermodule character_lcd_0 (
// InputsLCD moduleclk,
reset

Signal Name	FPGA Pin No.	Description
LCD_DATA[0]	PIN_J1	LCD Data[0]
LCD_DATA[1]	PIN_J2	LCD Data[1]
LCD_DATA[2]	PIN_H1	LCD Data[2]
LCD_DATA[3]	PIN_H2	LCD Data[3]
LCD_DATA[4]	PIN_J4	LCD Data[4]
LCD_DATA[5]	PIN_J3	LCD Data[5]
LCD_DATA[6]	PIN_H4	LCD Data[6]
LCD_DATA[7]	PIN_H3	LCD Data[7]
LCD_RW	PIN_K4	LCD Read/Write Select, 0 = Write, 1 = Read
LCD_EN	PIN_K3	LCD Enable
LCD_RS	PIN_K1	LCD Command/Data Select, 0 = Command, 1 = Data
LCD_ON	PIN_L4	LCD Power ON/OFF
LCD_BLON	PIN_K2	LCD Back Light ON/OFF

// Inputs clk, reset, address, chipselect, read, write, writedata,

// Bidirectionals
LCD_DATA,
// Outputs
LCD_ON,
LCD_BLON,
LCD_EN,
LCD_RS,
LCD_RW,
readdata,
waitrequest

);

Character LCD API

- <u>Header file</u>: altera_up_character_lcd.h
- <u>Device type</u>: alt_up_character_lcd_dev
- <u>Function prototypes</u>:
 - alt_up_character_lcd_dev* alt_up_character_lcd_open_dev(const char* name);
 - void alt_up_character_lcd_init(alt_up_character_lcd_dev *lcd);
 - int alt_up_character_lcd_set_cursor_pos (alt_up_character_lcd_dev *lcd, unsigned x_pos, unsigned y_pos);
 - void alt_up_character_lcd_string(alt_up_character_lcd_dev *lcd, const char *ptr);

— …

Test the new Nios II system

• Write a simple program that wtites a string on the 16x2 character display

References

 Altera "Embedded Peripherals User Guide," *ug_embedded_ip.pdf*

– Section I - Chapter 2. SDRAM controller

- Zentel, "A3V64S40FTP datasheet"
- Altera, "Using the SDRAM Memory on Altera's DE2 Board," tut_DE2_sdram_verilog.pdf with Verilog Design
- Altera, "16x2 Character Display for Altera DE2-Series Boards," Character_LCD.pdf