
SISTEMI	EMBEDDED

The	C	Pre-processor
Fixed-size	integer	types

Bit	Manipulation

Federico	Baronti Last	version:	20160302

The	C PreProcessor CPP	(1)
• CPP is	a	program	called	by	the	compiler	that	
processes	the	text of	the	program	before	its	actual	
translation

• It	basically	does	the	following	operations:
– Includes	the	content	of	other	files	(usually	header files)
– Expands	the	SYMBOLS	with	their	related	definitions	
– Includes/Excludes	part	of	the	code	to	the	text	that	will	be	
actually	compiled

• These	actions	are	controlled	by	directives
– A	directive	is	a	single code	line	that	starts	with	#
– You	can	use	the	character	\ to	go	to	a	new	line	within	the	
same	directive

The	C	PreProcessor (2)

• Inclusion	of	header	files	(files	with	.h	extension	
that	contains	only	declarations).	E.g.
#include	<stdint.h>
#include	“my_header.h”

• The	file	stdint.h is	searched	in	a	standard	
directory	list;	my_header.h is	searched	in	the	
same	directory	as	the	including	source	file

• The	list	of	directories	searched	for	header	files	
can	be	changed	with	a	compiler	option

The	C	PreProcessor (3)
/*	…	*/
#include	“../FirstNios2_Prog_bsp/system.h”	
/*	…	*/

First_Nios2_Prog.c

/*	…	*/
#include	“system.h”
/*	…	*/	

First_Nios2_Prog.c

Compiling	First_Nios2_Prog.c	(other	compiler	options	omitted)
nios2-elf-gcc	-c	–o	First_Nios2_Prog.o	First_Nios2_Prog.c

Compiling	First_Nios2_Prog.c	(other	compiler	options	omitted)
nios2-elf-gcc	–I../FirstNios2_Prog_bsp/ -c	–o	First_Nios2_Prog.o	
First_Nios2_Prog.c

Header	path	can	be	omitted	by	using	-Idir compiler	option

The	C	PreProcessor (4)

• Macro	is	a	symbol	that	is	replaced	with	its	
definition	before	compilation	(it	can	be	followed	
by	one	or	or	more	arguments).	E.g. of	macro	def.
#define	MASK	0xF
#define	MAX(A,B)	((A)	>	(B)	?	(A)	:	(B))

• The	instructions:
b	=	a	&	MASK;
y	=	1	+	MAX(10,x);

• are	expanded	by	the	preprocessor	to:
b	=	a	&	0xF;
y	=	1	+	((10)	>	(x)	?	(10)	:	(x));

The	C	PreProcessor (5)

• Macro	are	largely	used	in	C	programming	of	
embedded	systems	to	access	peripheral	registers.	
E.g.	of	definition:
#include	“system.h”
#define	RED_LEDS_DATA_REG	 \

(*(volatile	unsigned	int*)	RED_LEDS_BASE)
#define	SLIDER_DATA_REG	 \

(*(volatile	unsigned	int*)	SLIDER_SWITCHES_BASE)

• E.g.	of	use:
RED_LEDS_DATA_REG	=	SLIDER_DATA_REG;
/*	Show	the	status	of	the	slider	switches	on	the	red	leds */

The	C	PreProcessor (6)

• The	macro	name_of_the_macro exists	from	its	
definition	to	the	end	of	the	file	or	when	it	is	
undefined	using	the	directive:
#undef name_of_the_macro

• A	macro	can	also	be	defined	with	an	option	passed	
to	the	compiler:
-D	name_of_the_macro=def

• Do	a	large	use	of	parenthesis	to	avoid	unintended	
behaviors	when	the	MACRO	is	expanded

• Write	macro	SYMBOLS	with	all	CAPITAL	letters

The	C	PreProcessor (7)

• Conditional	compilation	makes	it	possible	to	
include/exclude	code	segments	if	certain	
expressions	evaluated	by	the	preprocessor	are	
true	or	false.	E.g.
#ifdef DEBUG	
printf(“Debug	mode	enabled\n”);
/*	or	any	other	code	that	we	want	to	include
for	debug	purposes	*/

#endif
• #define	DEBUG	1
includes	the	debug	code

The	C	PreProcessor (8)

• A	common	use	of conditional	compilation	is	to	
avoid	multiple	inclusions	of	a	header	file.	To	this	
end,	start	the	header	file,	say	config.h,	with:
#ifndef CONFIG_H_
#define	CONFIG_H_

• and	end	it	with:
#endif /*	CONFIG_H_	*/

• After	the	first	inclusion	of	my_header.h,	the	
symbol	MY_HEADER_H	is	defined.	Thus,	further	
inclusions	are	filtered	out	by	the	conditional	
compilation	directives

Integer	types
• 2	basic	integer	types:	char,	int
• and	some	type-specifiers:
– sign:	signed,	unsigned
– size:	short,	long

• The	actual	size	of	an	integer	type	depends	on	the	
compiler	implementation
– sizeof(type)	returns	the	size	(in	number	of	bytes)	used	to	
represent	the	type	argument

– sizeof(char)	≤	sizeof(short)	≤	sizeof(int)	≤	sizeof(long)...
≤	sizeof(long	long)

Fixed-size	integers	(1)

• In	embedded	system	programming
integer	size	is	important
– Controlling	minimum	and	maximum	values	that	
can	be	stored	in	a	variable

– Increasing	efficiency	in	memory	utilization
– Managing	peripheral	registers

• To	increase	software	portability,	fixed-size	
integer	types	can	be	defined	in	a	header	file	
using	the	typedef keyword

Fixed-size	integers	(2)

• C99 update	of	the	ISO	C	standard defines	a	set	
of	standard	names	for	signed	and	unsigned	
fixed-size	integer	types
– 8-bit:			int8_t,			uint8_t
– 16-bit:	int16_t,	uint16_t
– 32-bit:	int32_t,	uint32_t	
– 64-bit:	int64_t,	uint64_t

• These	types	are	defined	in	the	standard-
library header	file	stdint.h

Fixed-size	integers	(3)	
• Altera	HAL	(Hardware	Abstraction Layer)	also provides the	

header	file	alt_types.h (<project_name_bsp>/HAL/inc/)	
with	definition	of	fixed-size	integer	types:	

typedef signed char alt_8;
typedef unsigned char alt_u8;
typedef signed short alt_16;
typedef unsigned short alt_u16;
typedef signed long alt_32;
typedef unsigned long alt_u32;
typedef long	long alt_64;
typedef unsigned	long	long alt_u64;

• These type definitions are	used in	Altera	HAL	source	files.
• To	increase portability,	you’d better code	using C99

fixed-size integer types (including the	header file	stdint.h)

Putting	into	practice

• Write	a	program	that	shows	on	the	7-seg	
display	HEX3-HEX0	the	sizes	in	number	of	
bytes	of	long	long,	long,	short and	char
integer	data	types

• Do	they	match	with	the	definitions	of
fixed-size	integer	types	in	alt_types.h?

Logical	operators

• Integer	data	can	be	interpreted	as	logical	values in	
conditions	(if,	while,	...)	or	in	logical	expressions:
=	0,	FALSE
ANY	OTHER	VALUE,	TRUE

• Logical	operators:

• Integer	data	can	store	the	result	of	a	logical	
expressions:	1	(TRUE),	0	(FALSE)

AND &&
OR ||
NOT !

Bitwise	operators	(1)

• Operate	on	the	bits	of	the	operand/s

AND &
OR |
XOR ^
NOT ~
SHIFT	LEFT <<
SHIFT	RIGHT >>

Shift	operators

• A <<	n
– The	result	is	the	bits	of	A moved	to	the	left	by	n
positions	and	padded	on	the	right	with	0

– It	is	equivalent	to	multiply	A by	2n if	the	result	can	
be	represented

• A >>	n
– The	result	is	the	bits	of	A moved	to	the	right	by	n
positions	and	padded	on	the	left	with	0 if	type	of	A
is	unsigned or	with	the	MSB	of	A if	type	is	signed

– It	is	equivalent	to	divide	A by	2n

Bit	manipulation	(1)
• << and	| operands	can	be	used	to	create	
expressive	binary	constants by	specifying	the	
positions	of	the	bits	equal	to	1	
– E.g.		(1<<7)	|	(1<<5)	|	(1<<0)	=	0xA1	(10100001)	
– Better	not	to	use	“magic	numbers” as	7,	5	and	0.
Use	instead	symbolic	names to	specify
bit	positions
• For	instance,	the	symbolic	names can	reflect	the	function	of	
the	bit	within	a	peripheral	register

– (1<<x)	can	be	encapsulated	into	a	macro:
• #define	BIT(x)				(1<<(x))

Bit	manipulations	(2)

• Altering	only	the	bits	in	given	positions
– E.g.	bits:	7,	5,	0
– #define MSK	=	BIT(7)	|	BIT(5)	|	BIT(0)

• Clearing	bits	
– A &=	~MSK;

• Setting	bits
– A |=	MSK;

• Toggling	bits
– A ^=	MSK;

Bit	manipulations	(3)

• Testing	bits
– E.g.	do	something	if	bit	0	(LSB)	of	A	is	set,	
regardeless	of	the	other	bits	of	A

– if (A	&	BIT(0))	{
/*	some	code	here	*/

}

