
SISTEMI	EMBEDDED

Stack,	Subroutine,	Parameter	Passing
C	Storage	Classes	and	Scope

Federico	Baronti Last	version:	20160314



Stack

• A	stack is	an	abstract	data	structure	managed	
according	to	a	last-in-first-out	(LIFO)	policy

• Consists	of	a	sequential	collection	(list)	of	data	
elements,	where	elements	are	
added/removed	at	top	end	only

• We	push a	new	element	on	the	stack	top
or	pop the	top	element	from	the	stack

• Programmer	can	create	a	stack	in	the	memory
• There	is	often	a	special	processor	stack	as	well

2



Processor	Stack

• Processor	has	the	stack	pointer	(SP)	register
that	points	to	top	of	the	processor	stack

• Push	operation	involves	two	instructions:
Subtract SP,	SP,	#4
Store Rj,	(SP)

• Pop	operation	also	involves	two	instructions:
Load Rj,	(SP)
Add SP,	SP,	#4

3



Subroutine	(1)
• In	a	given	program,	a	particular	task	may	be
executed	many	times	using	different	data
– Support	for	structured	and	modular	coding	style

• A	subroutine	implement	task	in	one	block	of	
instructions

• Rather	than	reproducing	the	entire	subroutine	
block	in	each	part	of	program	that	uses	it,	
exploits	a	subroutine	Call
– However,	in	C	language,	we	may	force	the	compiler	to	
copy	the	subroutine	code	in	each	point	is	called	by	
declaring	the	subroutine	with	the	inline keyword

• A	Call instruction	is	a	special	type	of	branch
4



Subroutine	(2)

• Branching	to	same	block	of	instructions
saves	space	in	memory	(single	copy	of	the	
subroutine	block),	but	we	must	implement	a	
mechanism	to	branch	back
– The	subroutine	must	return	to	the	calling	program
after	executing	last	instruction	in	subroutine

• This	branch	is	done	with	a	Return instruction
• Subroutine	can	be	called	from	different	places
• How	can	return	be	done	to	the	correct	place?
– This	is	the	issue	of	subroutine	linkage

5



Subroutine	Linkage

• During	execution	of	Call	instruction,	PC	is	firstly	
updated	to	point	to	the	instruction	after	Call

• Save	this	address	to	be	used	by	the	Return	
instruction	in	the	called	subroutine

• Simplest	method:	place	address	in	a	link	register
• Call	instruction	thus	performs	two	operations:
– store	updated	PC	contents	in	the	link	register,
– then	branch	to	target	(subroutine)	address

• Return just	branches	to	address	in	link	register

6



7



Subroutine	Nesting	and	the	Stack

• We	can	permit	only one	subroutine	to	call	
another	using	just	the	link	register.	
– Link	register	contents	after	first	subroutine	call	are	
overwritten	after	second	subroutine	call

• To	allow	subroutine	nesting,	first	subroutine	
should	save	link	register	on	the	processor	
stack	before	second	call

• After	return	from	second	subroutine,
first	subroutine	restores	the	link	register	from	
the	processor	stack

8



Parameter	Passing

• A	program	may	call	a	subroutine	many	times	
with	different	data	to	obtain	different	results

• Information	exchange	to/from	a	subroutine
is	called	parameter	passing

• Parameters	may	be	passed	in	registers
• Simple,	but	limited	to	available	registers
• Alternative:	use	stack	for	parameter	passing,
and	also	for	local	variables	&	saving	registers

9



10

Example	using	registers

Calling	program
Load	R2,	N Number	of	element	to	be	added
Move	R4,	#NUM1 Address	of	the	first	element
Call	LISTADD
Store	R3,	SUM Result	of	the	LISTADD	subroutine
…

Subroutine
LISTADD: Subtract	SP,	SP,	#4

Store	R5,			(SP) Save	R5	in	the	stack
Subtract	SP,	SP,	#4
Store	R2,			(SP) Save	R2	in	the	stack
Subtract	SP,	SP,	#4
Store	R4,			(SP) Save	R4	in	the	stack
Clear	R3

LOOP: Load	R5,	(R4)
Add	R3,	R3,	R5
Add	R4,	R4,	#4
Subtract	R2,	R2,	#1
Branch_if_[R2]>0	LOOP
Load	R4,	(SP) Restore	R4	from	the	stack
Add	SP,	SP,	#4
Load	R2,	(SP) Restore	R2	from	the	stack
Add	SP,	SP,	#4
Load	R5,	(SP) Restore	R5	from	the	stack
Add	SP,	SP,	#4
Return



11

Example	using	stack

Calling	program
Load	R2,	N Number	of	element	to	be	added
Subtract	SP,	SP,	#4
Store	R2,	(SP)
Move	R2,	#NUM1 Address	of	the	first	element
Subtract	SP,	SP,	#4
Store	R2,	(SP)
Call	LISTADD
Store	R3,	SUM Result	of	the	LISTADD	subroutine
Add	SP,	SP,	#8
…

Subroutine
LISTADD: Subtract	SP,	SP,	#12

Store	R2,				8(SP)
Store	R4,				4(SP)
Store	R5,				0(SP)
Load	R4,				12(SP)
Load	R2,				16(SP)
Clear	R3

LOOP: Load	R5,	(R4)
Add	R3,	R3,	R5
Add	R4,	R4,	#4
Subtract	R2,	R2,	#1
Branch_if_[R2]>0	LOOP

Load	R2,	8(SP)
Load	R4,		4(SP)
Load	R5,		0(SP)
Add	SP,	SP,	#12
Return



Stack	Frame
• Locations	at	the	top	of	the	processor	stack	are	
used	as	a	private	work	space	by	subroutines	

• A	stack	frame	is	allocated	on	subroutine	entry	
and	deallocated on	subroutine	exit

• A	frame	pointer	(FP)	register	enables	access	to	
private	work	space	for	current	subroutine	
instance
– FP facilitates	access	to	parameters	(with	positive	
indexes)	and	local	variable	(with	negative	indexes)

– FP of	the	caller	must	be	saved	in	the	stack	frame
• With	subroutine	nesting,	the	stack	frame	also	
saves	return	address	of	the	caller

12



13



C	Storage	Classes	and	Scope	(1)

• The	storage	class	determines	how	long	an	
object	is	kept	in	memory	during	the	program	
execution

• A	scope	specifies	the	part	of	the	program	in	
which	a	variable	name	is	visible,	that	is,	the	
accessibility	of	the	variable	by	its	name

• In	C	program,	there	are	four	storage	classes:	
automatic,	register,	external,	and	static.

14



C	Storage	Classes	and	Scope	(2)
• Variables	defined	at	the	beginning	of	a	block	({…},	
e.g.,	at	the	beginning	of	a	function)	belong	by	
default	to	the	automatic class
– Memory	is	allocated	automatically upon	entry	to	a	
block	and	freed	automatically	upon	exit	from	the	
block

– The	scope	of	automatic	variables	is	local	to	the	block	
in	which	they	are	declared,	including	any	blocks	
nested	within	that	block.	For	these	reasons,	they	are	
also	called	local	variables

– The	programmer	can	suggest	to	the	compiler	that	
particular	automatic	variables	should	be	allocated	to	
CPU	registers,	if	possible,	using	the	register keyword	in	
the	variable	definition

15



C	Storage	Classes	and	Scope	(3)
• Variables	defined	outside	any	block	are	external
and	static.	They	are	accessible	from	within	any	
block,	are	created	at	the	start	of	the	program	and	
live	up	to	the	program	end.		Such	variables	are	
called	global	variables
– If	not	explicitly	specified,	global	variables	are	
initialized	to	0.	

– The	scope	of	external	variables	is	global.	All	functions	
following	the	declaration	may	access	the	external	
variable	by	using	its	name.		However,	if	a	local	variable	
having	the	same	name	is	declared	within	a	function,	
references	to	this	name	will	access	the	local	variable

16



C	Storage	Classes	and	Scope	(4)

• Variables	inside	a	block	are	automatic by	
default,	but	can	be	made	static	using	the	static
keyword	in	their	definition
– Static variables	may	be	initialized	 in	their	
definitions

– However,	the	initializers	must	be	constant	
expressions,	and	initialization	 is	done	only	once	at	
compile	time	when	memory	is	allocated	for	the	
static	variable

17



C	Storage	Classes	and	Scope	(5)

• To	use	a	global	variable in	a	function	defined	
in	a	different	file,	the	latter	must	contain	the	
declaration	only	of	this	variable
– This	is	done	using	the	extern keyword

18

//file1.c
#include	”file2.h”

int main()	{
func2(10);
fprint(“gvar1	 =	%d”,	gvar1);
//…
}

//file2.c
#include	”file2.h”

int gvar1 =	0;

void	func2(int arg1)	{
gvar1 +=	arg1;
}

//file2.h
#ifndef FILE2_H_
#define	FILE2_H_

extern	int gvar1;

void	func2(int arg);

#endif



References

• C.	Hamacher,	Z.	Vranesic,	S.	Zaky,	N.	Manjikian
"Computer	Organization	and	Embedded	Systems,”	
McGraw-Hill	International	Edition
– Cap.	II	2.5,	2.6	and	2.7

19


