SISTEMI EMBEDDED

Basic Concepts about Computers

Federico Baronti Last version: 20160301



Functional Units of a Computer

Input

Output

/0

Memory

Interconnection
network

Memory

Input |:> Processor ::>Output

Arithmetic

and
logic

Control

Processor




Instructions and Programs

An instruction specifies an operation and
the locations of its data operands

A 32-bit word typically holds one encoded
Instruction

A sequence of instructions, executed one
after another, constitutesa program

Both a program and its data are stored in
the main memory



Instruction types

* Three basic instruction types:

— Load: Read a data operand from memory or
an input device into the processor

— Store: Write a data operand from a processor
register to memory or an output device

— Operate: Perform an arithmetic or logic
operation on data operands in processor
registers

— Branch: Alter if a condition is verified the
sequential execution of the instructions



Program Example

A, B, and C, are labels representing memory word
addresses; Ri are processor registers

* A program for the calculation

C=A+8B

IS:
Load R2, A
Load R3, B

Add R4, R2, R3
Store R4, C




Main Processor Elements (1)

The program counter (PC) register holds the
memory address of the currentinstruction

The instruction register (IR) holds the current
Instruction

General-purpose registers hold data and
addresses

Control circuits and the arithmetic and logic
unit (ALU) fetch and execute instructions



Main Processor Elements (2)

Main memory ‘

\/

Processor-memory interface ‘

PC R,
Control
R 1
<—— Processor
IR
ALU
Rn—l

n general purpose
registers




Fetching and executing instructions
Example: Load R2, LOC

The processor control circuits do the following:

* Send address in PC to memory; issue Read
* Load instruction from memory into IR

* Increment PC to point to next instruction
* Send address LOC to memory; issue Read
* Load word from memory into register R2



Representation of Information

 Whatever is the source of information, data
are represented by an array of bits (usually in
a number multiple of 8, i.e. 1 BYTE)

* An array of bits directly represents a Natural
number in base 2 (positional binary notation)
—B=b,;..b;byrepresentsthe number

V(B) =b,x2"1 + ... b;x 21+ byx 2°

* Any other information can be encoded by a

Natural using a specific representation

— E.g. sighed numbers, floating point numbers,
chars,...

— Representations typically use 1, 2, 4, 8 BYTES



Signed Numbers (1)

For signed integers, the leftmost bit (MSB) is
used to indicate the sign:

0 for positive
1 for negative

There are three ways to represent signed
Integers:

* Sign and magnitude
 1’'s complement
* 2’s complement (the MSB has weight -2"1)



Signed Numbers (2)

B Values represented
Sign and
byb,b,b, magnitude 1’s complement 2’s complement
0111 +7 +7 +7
0110 +6 +6 +6
0101 +5 +5 +5
0100 +4 +4 +4
0011 +3 +3 +3
0010 +2 +2 +2
0001 +1 + 1 + 1
0000 +0 +0 +0
1000 -0 -7 -8
1001 -1 -6 -7
1010 -2 -5 -6
1011 -3 -4 -5
1100 —4 -3 -4
1101 -5 -2 -3
1110 -6 -1 -2
1111 —7 -0 -1




Signed Numbers (3)

2’s-complement representationis used in
current computers

Consider a four-bit signed integer example,
where the value +5 is represented as:
0101

To form the value -5, complement all bits of
0101 toobtain 1010
and then add 1 to obtain
1011



Signed Numbers (4)

Replicate the sign bit to extend
4-bit signed integers to 8-bit signed integers




Character Encoding

 American Standard Code for Information
Interchange (ASCII)

* Uses 7-bit codes (extended version 1 BYTE)

e Some examples:

character binary code (decimal, Ox hexadecimal)
A 1000001 (65 0x41)

a 1100001 (97, 0x61)
0 0110000 (48, 0x30)
1 0110001 (49, 0x31)
9 0111001 (57, 0x39)



Dec_Hx Oct Char Dec Hx Oct Html Chr  |Dec Hx Oct Html Chr| Dec Hx Oct Html Chr
0 0 000 NUL (null) 32 20 040 &#32; Space i =
1l 1 001 50H (start of heading) 33 21 041 &#33; ! AR 97 61 141 «#97; a
2 2 002 STX (start of text) 34 22 042 &«#34; " E | 958 62 142 «#98; Db
3 3 003 ETX (end of text) 35 23 043 &#35; # CQ 99 63 143 &«#99; C
4 4 004 EOT (end of transmission) 36 24 044 &«#36; § D J100 64 144 &#l00; d
5 5 005 ENQ (encquiry) 37 25 045 &#37; % E J101 65 145 &«#101; =
6 6 006 ACK (acknowledge) 38 26 046 &#38; « F J102 66 146 &«#l02; £
7 7 007 BEL (bell) 39 27 047 &#39; ' G J103 67 147 &#103; ¢
& 8 010 BE5 (backspace) 40 28 050 &«#40; | H J104 65 150 &#104; h
9 9 0l1 TAE (horizontal tab) 41 29 051 &«#4l:; ) I J105 69 151 &«#l05; 1

10 A 012 LF (NL line feed, new line)| 42 2A 052 &«#d42; * J J106 64 152 &#106; ]

11 B 013 VT (wvertical tab) 43 2B 053 &#43; + K J107 6B 153 &«#107; k

12 C 014 FF (NP form feed, new page)| 44 2C 054 &«#44; , L J108 6C 154 &#108; 1

13 D 015 CR (carriage return) 45 2D 055 &«#45; - M §109 6D 155 &«#109;

14 E 016 30 (shift out) 46 2E 056 &«#46; . N §110 6E 156 &#l1ll0:; n

15 F 017 SI (shift in) ; 0§11l 6F 157 &#lll; o

16 10 020 DLE (data link escape) 43 30 060 &#48: 0 P J11z 70 160 &#llZ; p

17 11 021 DCl (dewvice control 1) 49 31 061 &#49; 1 0 §113 71 161 &#113; 4

18 12 022 DCZ (device control 2) 50 32 062 &#50; 2 R #1114 72 162 &«#ll4; ¢

19 13 023 DC3 (device control 3) 51 33 063 &#51; 3 5 Q115 73 163 &#115; =S

20 14 024 DC4 (dewvice control 4) 52 34 064 &#52; 4 T §116 74 164 &#ll6; ©

21l 15 025 NAK [(negative acknowledge) 53 35 065 &#53; 5 U §117 75 165 &«#117; u

22 16 026 SYN (synchronous idle) 54 36 066 &«#54; 6 V J118 76 166 &#113; Vv

23 17 027 ETE (end of trans. block) 55 37 067 &#55; 7 119 77 167 &#119; w

24 18 030 CAN (cancel) 56 38 070 &«#56; © X §l20 78 170 &#120; X

25 19 031 EM  (end of medium) 57 39 071 &#57; 9 T §12l 79 171 &«#12l; ¥

26 14 032 SUE (substitute) 58 34 072 & I Z §1z2z2 74 172 &«#l22; 2

27 1B 033 ESC (escape) 59 3B 073 &#59; ; & - 123 7B 173 &Flza: |

28 1C 034 FS (file separator) 60 3C 074 &#60; < 92 5C 134 &«#92; % |124 7C 174 &«#l24; |

29 1D 035 G5 (group separator) 61 3D 075 &#61; = 93 SD 135 &#93; ] |125 7D 175 &#125; }

30 1E 036 RS (record separator) 62 3E 076 &#62; > 94 SE 136 «#94; ~ |126 7E 176 &#l26; ~

31 1F 037 US {unit separator) 63 3F 077 &#63; 2 95 S5F 137 &«#95; _ |127 7F 177 &#l127; DEL

Source: www.LookupTables.com



Memory Organization

Memory consists of many millions of cells
Each cell holds a bit of information, O or 1
Information is usually handled in larger units
A word is a group of n bits

Word length can be 16 to 64 bits

Memory is a collection of consecutive words
of the size specified by the word length



Word and Byte Encoding

A common word length is 32 bits

Such a word can store a 32-bit signed integer
or four 8-bit bytes (e.g., ASCIl characters)

For 32-bit integer encoding, bit b;, is sign bit

Words in memory may store data
or machine instructions for a program

Each machine instruction may require
one (or more consecutive words for encoding)



|- 32 bits —\

L Sign bit: b5, = 0 for positive numbers

by, = 1 for negative numbers

(a) A signed integer

\"4 \"4 \"4 \"4
ASCII ASCII ASCII ASCII
character character character character

(b) Four characters



Addresses for Memory Location

To store or retrieve items of information,
each memory location has a distinct address

Numbers O to 2¥ — 1 are used as addresses
for successive locations in the memory

The 2% locations constitute the address space
Memory size set by k (number of address bits)

Examples: k=20 — 2?° or 1M locations,
k=32 — 232 or 4G locations



Byte Addressability

Byte size is always 8 bits
But word length may range from 16 to 64 bits
Impractical to assigh an address to each bit

Instead, provide a byte-addressable memory
that assigns an address to each byte

Byte locations have addressesO, 1, 2, ...

Assuming that the word length is 32 bits,
word locations have addresses 0, 4, 8§, ...



Big- Little-Endianess

Two ways to assign byte address across words

Big-endian addressing assigns lower addresses
to more significant (leftmost) bytes of word

Little-endian addressing uses opposite order

Commercial computers use either approach,
and some can support both approaches

Addresses for 32-bit words are still 0, 4, §, ...
Bits in each byte labeled b, ... b,, left to right



Word
address Byte address Byte address

(a) Big-endian assignment (b) Little-endian assignment



Word Alignment

# of bytes per word is normally a power of 2

Word locations have aligned addresses if they
begin at byte addresses that are multiples of
the number of bytes in a word

Examples of aligned addresses:
2 bytes per word —= 0, 2, 4, ...
8 bytes per word — 0, 8§, 16, ...

Some computers permit unaligned addresses



