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Introduction to RF Simulation and Its Application
Kenneth S. Kundert

Abstract—Radio-frequency (RF) circuits exhibit several distin-
guishing characteristics that make them difficult to simulate using
traditional SPICE transient analysis. The various extensions to
the harmonic balance and shooting method simulation algorithms
are able to exploit these characteristics to provide rapid and
accurate simulation for these circuits.

This paper is an introduction to RF simulation methods and
how they are applied to make common RF measurements. It
describes the unique characteristics of RF circuits, the methods
developed to simulate these circuits, and the application of these
methods.

Index Terms—Circuit simulation, cyclostationary noise, en-
velope methods, harmonic balance, interchannel interference,
intermodulation distortion, jitter, mixer noise, mixers, nonlinear
oscillators, phase noise, quasi-periodic methods, shooting meth-
ods, SPICE.

I. THE RF INTERFACE

W IRELESS transmitters and receivers can be concep-
tually separated into baseband and radio-frequency

(RF) sections. Baseband is the range of frequencies over
which transmitters take their input and receivers produce their
output. The width of the baseband determines the underlying
rate at which data can flow through the system. There is
a considerable amount of signal processing that occurs at
baseband designed to improve the fidelity of the data stream
being communicated and to reduce the load the transmitter
places on the transmission medium for a particular data rate.
The RF section of the transmitter is responsible for converting
the processed baseband signal up to the assigned channel
and injecting the signal into the medium. Conversely, the RF
section of the receiver is responsible for taking the signal from
the medium and converting it back down to baseband.

With transmitters there are two primary design goals. First,
they must transmit a specified amount of power while con-
suming as little power as possible. Second, they must not
interfere with transceivers operating on adjacent channels.
For receivers, there are three primary design goals. First,
they must faithfully recover small signals. Second, they must
reject interference outside the desired channel. And third, like
transmitters, they must be frugal power consumers.

A. Small Desired Signals

Receivers must be very sensitive to detect small input
signals. Typically, receivers are expected to operate with as
little as 1 V at the input. The sensitivity of a receiver is
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Fig. 1. A coherent superheterodyne receiver’s RF interface.

limited by the noise generated in the input circuitry of the
receiver. Thus, noise is an important concern in receivers, and
the ability to predict noise by simulation is very important. As
shown in Fig. 1, a typical superheterodyne receiver first filters
and then amplifies its input with a low-noise amplifier (LNA).
It then translates the signal to the intermediate frequency (IF)
by mixing it with the first local oscillator (LO). The noise
performance of the front end is determined mainly by the LNA,
the mixer, and the LO. While it is possible to use traditional
SPICE noise analysis to find the noise of the LNA, it is useless
on the mixer and the LO because the noise in these blocks is
strongly influenced by the large LO signal.

The small input signal level requires that receivers must be
capable of a tremendous amount of amplification. Often as
much as 120 dB of gain is needed. With such high gain, any
coupling from the output back to the input can cause problems.
One important reason why the superheterodyne receiver archi-
tecture is used is to spread that gain over several frequencies
to reduce the chance of coupling. It also results in the first
LO’s being at a different frequency than the input, which
prevents this large signal from contaminating the small input
signal. For various reasons, the direct conversion or homodyne
architecture is a candidate to replace the superheterodyne
architecture in some wireless communication systems [1], [16],
[44], [45]. In this architecture, the RF input signal is directly
converted to baseband in one step. Thus, most of the gain will
be at baseband and the LO will be at the same frequency as the
input signal. In this case, the ability to determine the impact of
small amounts of coupling is quite important and will require
careful modeling of the stray signal paths, such as coupling
through the substrate, between package pins and bondwires,
and through the supply lines.

B. Large Interfering Signals

Receivers must be sensitive to small signals even in the
presence of large interfering signals, often known as blockers.
This situation arises when trying to receive a weak or distant
transmitter with a strong nearby transmitter broadcasting in
an adjacent channel. The interfering signal can be 60–70-dB
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Fig. 2. A digital direct conversion transmitter’s RF interface.

(a)

(b)

Fig. 3. Spectrum of a narrow-band signal centered at a carrier frequencyfc
(a) before and (b) after passing though a nonlinear circuit. The nonlinearity
causes the signal to be replicated at multiples of the carrier, an effect referred
to as harmonic distortion, and adds a skirt to the signal that increases its
bandwidth, an effect referred to as intermodulation distortion. It is possible to
eliminate the effect of harmonic distortion with a bandpass filter; however, the
frequency of the intermodulation distortion products overlaps the frequency
of the desired signal and so cannot be completely removed with filtering.

larger than the desired signal and can act to block its reception
by overloading the input stages of the receiver or by increasing
the amount of noise generated in the input stage. Both of these
problems result if the input stage is driven into a nonlinear
region by the interferer. To avoid these problems, the front
end of a receiver must be very linear. Thus, linearity is also
an important concern in receivers. Receivers are narrow-band
circuits and so the nonlinearity is quantified by measuring
the intermodulation distortion. This involves driving the in-
put with two sinusoids that are in band and close to each
other in frequency and then measuring the intermodulation
products. This is generally an expensive simulation with
SPICE because many cycles must be computed in order to
have the frequency resolution necessary to see the distortion
products.

C. Adjacent Channel Interference

Distortion also plays an important role in the transmitter
where nonlinearity in the output stages can cause the band-
width of the transmitted signal to spread out into adjacent
channels. This is referred to as spectral regrowth because, as
shown in Figs. 2 and 3, the bandwidth of the signal is limited
before it reaches the transmitter’s power amplifier (PA), and
intermodulation distortion in the PA causes the bandwidth
to increase again. If it increases too much, the transmitter
will not meet its adjacent channel power requirements. When
transmitting digitally modulated signals, spectral regrowth is
virtually impossible to predict with SPICE. The transmission
of around 1000 digital symbols must be simulated to get

a representative spectrum, and this combined with the high
carrier frequency makes use of transient analysis impractical.

II. CHARACTERISTICS OFRF CIRCUITS

RF circuits have several unique characteristics that are
barriers to the application of traditional circuit simulation
techniques. Over the last decade, researchers have developed
many special-purpose algorithms that overcome these barriers
to provide practical simulation for RF circuits, often by
exploiting the very characteristic that represented the barrier
to traditional methods [28].

A. Narrow-Band Signals

RF circuits process narrow-band signals in the form of
modulated carriers. Modulated carriers are characterized as
having a periodic high-frequency carrier signal and a low-
frequency modulation signal that acts on the amplitude, phase,
or frequency of the carrier. For example, a typical cellular tele-
phone transmission has a 10–30-kHz modulation bandwidth
riding on a 1–2-GHz carrier. In general, the modulation is
arbitrary, though it is common to use a sinusoid or a simple
combination of sinusoids as test signals.

The ratio between the lowest frequency present in the
modulation and the frequency of the carrier is a measure of
the relative frequency resolution required of the simulation.
General-purpose circuit simulators, such as SPICE, use tran-
sient analysis to predict the nonlinear behavior of a circuit.
Transient analysis is expensive when it is necessary to resolve
low modulation frequencies in the presence of a high carrier
frequency because the high-frequency carrier forces a small
timestep while a low-frequency modulation forces a long
simulation interval.

Passing a narrow-band signal though a nonlinear circuit
results in a broad-band signal whose spectrum is relatively
sparse, as shown in Fig. 3. In general, this spectrum consists
of clusters of frequencies near the harmonics of the carrier.
These clusters take the form of a discrete set of frequencies if
the modulation is periodic or quasi-periodic, and a continuous
distribution of frequencies otherwise.

RF simulators exploit the sparse nature of this spectrum in
various ways and with varying degrees of success. Steady-
state methods (Section IV-A) are used when the spectrum is
discrete, and transient methods (Section IV-C) are used when
the spectrum is continuous.

B. Time-Varying Linear Nature of the RF Signal Path

Another important but less appreciated aspect of RF circuits
is that they are generally designed to be as linear as possible
from input to output to prevent distortion of the modulation or
information signal. Some circuits, such as mixers, are designed
to translate signals from one frequency to another. To do so,
they are driven by an additional signal, the LO, a large periodic
signal the frequency of which equals the amount of frequency
translation desired. For best performance, mixers are designed
to respond in a strongly nonlinear fashion to the LO. Thus,
mixers behave both near linearly (to the input) and strongly
nonlinearly (to the LO).
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(a)

(b)

Fig. 4. One can often approximate (a) a nonlinear clocked or periodically
driven circuit with (b) a linear periodically varying circuit.

A timing or clock signal such as the LO is independent of
the information signal, and so they may be considered to be
part of the circuit rather than an input to the circuit, as shown
in Fig. 4. This simple change of perspective allows the mixer
to be treated as having a single input and a near-linear, though
periodically time-varying, transfer function. As an example,
consider a mixer made from an ideal multiplier and followed
by a low-pass filter. A multiplier is nonlinear and has two
inputs. Applying an LO signal of consumes one
input and results in a transfer function of

LPF (1)

which is clearly time varying and is easily shown to be linear
with respect to . If the input signal is

(2)

then

LPF (3)

and

(4)

This demonstrates that a linear periodically varying transfer
function implements frequency translation.

Often we can assume that the information signal is small
enough to allow the use of a linear approximation of the
circuit from its input to its output. Thus, a small-signal analysis
can be performed, as long as it accounts for the periodically
varying nature of the signal path, which is done by linearizing
about the periodic operating point. This is the idea behind the
small-signal analyses of Section IV-B. Traditional simulators
such as SPICE provide several small-signal analyses, such
as the ac and noise analyses, that are considered essential
when analyzing amplifiers and filters. However, they start by
linearizing a nonlinear time-invariant circuit about a constant
operating point and so generate a linear time-invariant repre-
sentation that cannot exhibit frequency translation. Linearizing
a nonlinear circuit about a periodically varying operating
point extends small-signal analysis to clocked circuits, or
circuits that must have a periodic clock signal present to
operate properly, such as mixers, switched filters, samplers,
and oscillators (oscillators are self-clocked, so the clock signal
is the desired output of the oscillator and the information signal
is generally an undesired signal, such as the noise). In doing

so, a periodically varying linear representation results, which
does exhibit frequency translation.

All of the traditional small-signal analyses can be extended
in this manner, enabling a wide variety of applications (some
of which are described in [59]). In particular, a noise analysis
that accounts for noise folding and cyclostationary noise
sources can be implemented [40], [52], which fills a critically
important need for RF circuits. When applied to oscillators, it
also accounts for phase noise [8], [9], [21], [22].

C. Linear Passive Components

At the high frequencies present in RF circuits, the pas-
sive components, such as transmission lines, spiral inductors,
packages (including bond wires), and substrates, often play a
significant role in the behavior of the circuit. The nature of
such components often makes them difficult to include in the
simulation.

Generally, the passive components are linear and are mod-
eled with phasors in the frequency domain, using either
analytical expressions or tables of-parameters. This greatly
simplifies the modeling of distributed components such as
transmission lines. Large distributed structures, such as pack-
ages, spirals, and substrates, often interface with the rest of
the circuit through a small number of ports. Thus, they can
be easily replaced by an -port macromodel that consists
of the transfer functions. These transfer functions are
found by reducing the large systems of equations that describe
these structures using Gaussian elimination, leaving only the
equations that relate the signals at their ports. The relatively
expensive reduction step is done once for each frequency as a
preprocessing step. The resulting model is one that is efficient
to evaluate in a frequency-domain simulator if is small.
This is usually true for transmission lines and spirals and less
true for packages and substrates.

Time-domain simulators are formulated to solve sets of
first-order ordinary-differential equations (ODE’s). However,
distributed components, such as transmission lines, are de-
scribed with partial-differential equations (PDE’s) and are
problematic for time-domain simulators. Generally, the PDE’s
are converted to a set of ODE’s using some form of dis-
cretization [6], [35]. Such approaches suffer from bandwidth
limits. An alternative approach is to compute the impulse
response for a distributed component from a frequency-domain
description and use convolution to determine the response
of the component in the circuit [20], [54], [56]. Evaluating
lossy or dispersive transmission-line models or tables of-
parameters with this approach is generally expensive and error
prone. Packages, substrates, and spirals can be modeled with
large lumped networks, but such systems can be too large to
be efficiently incorporated into a time-domain simulation, and
so some form of reduction is necessary [11], [42].

D. Semiconductor Models

The semiconductor models used by RF simulators must
accurately model the high-frequency, small-signal behavior
of the devices to accurately predict the behavior of RF
circuits. BJT’s have long been used in high-frequency analog
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Fig. 5. Signals at the inputs and outputs of an up-conversion mixer. The
modulation signal is mixed up to the upper and lower sidebands of the LO
and its harmonics.

circuits, and their models are well suited for RF circuits.
With the advent of submicrometer technologies, RF circuits
are now being realized in standard CMOS processes [1],
[16]; however, existing MOS models are inadequate for RF
applications. In particular, the distributed resistance in the gate
and substrate are not well modeled, which affects the driving
point immittances, the transfer functions, and, perhaps most
important, the noise [19]. In addition, flicker noise is not well
modeled, which plays a large roll in oscillator phase noise, and
is particularly important for CMOS oscillators because of the
large amount of flicker noise produced by MOS devices [32].

III. B ASIC RF BUILDING BLOCKS

RF systems are constructed primarily using four basic
building blocks—amplifiers, filters, mixers, and oscillators.
Amplifiers and filters are common analog blocks and are well
handled by SPICE. However, mixers and oscillators are not
heavily used in analog circuits, and SPICE has limited ability
to analyze them. What makes these blocks unique is presented
next.

A. Mixers

Mixers translate signals from one frequency range to an-
other. They have two inputs and one output. One input is for
the information signal and the other is for the clock signal,
the LO. Ideally, the signal at the output is the same as that
at the information signal input, except shifted in frequency
by an amount equal to the frequency of the LO. As shown
in Section II-B, a multiplier can act as a mixer. In fact, a
multiplier is a reasonable model for a mixer except that the LO
is passed through a limiter, which is usually an integral part of
the mixer, to make the output less sensitive to noise on the LO.

The input and output signals of a mixer used for up-
conversion (as in a transmitter) are shown in Fig. 5. The LO
is shown after passing through the limiter so that the output
in the time domain is simply the product of the inputs, or the

Fig. 6. Images at the input of the first mixing stage of a typical receiver.
The images are frequency bands where the output is sensitive to signals at
the input.

convolution of the two inputs in the frequency domain. The
information signal, here a modulation signal, is replicated at
the output above and below each harmonic of the LO. These
bands of signal above and below each harmonic are referred
to as sidebands.There are two sidebands associated with
each harmonic of the LO. The ones immediately above the
harmonics are referred to as theupper sidebandsand the ones
below are referred to as thelower sidebands.The sideband at
dc is referred to as thebaseband.

When the LO has a rich harmonic content, an input signal
at any sideband will be replicated to each of the sidebands
at the output. Usually, only one sideband is of interest, and
the others must be eliminated. If the desired sideband is
the baseband, then the undesired sidebands are eliminated
with a low-pass filter. Otherwise, the undesired sidebands are
removed with a bandpass filter. This works well for sidebands
of harmonics different from that of the desired sideband.
However, special techniques are then required to eliminate
the remaining undesired sideband [44].

Consider a down-conversion mixer (as in a receiver) and
assume that the mixer is followed by a filter. This filter is
used to remove all but the desired channel. The output of the
mixer/filter pair is sensitive to signals in each sideband of the
LO. Associated with each sideband is a transfer function from
that sideband to the output. The shape of the transfer function
is determined largely by the filter. Thus, the bandwidth of the
passband is that of the filter. If the filter is a bandpass, then
the passband of the transfer function will be offset from the
LO or its harmonic by the center frequency of the filter. These
passbands are referred to as theimagesof the filter and are
shown in Fig. 6. Generally, only one image is desired, and the
rest are undesired. The most troubling is usually the one that
shares the same harmonic as the desired image. Image-reject
mixers are designed to reduce the gain associated with this
undesired image [44].

Sidebands and images are related but are not the same.
Sidebands are frequency bands in the signal actually produced
at the output of a mixer, whereas images are frequency bands
at the input of a mixer that have the potential to produce a
response at the output.
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Fig. 7. The trajectory of an oscillator shown in state space with and without
a perturbation�x. By observing the time stamps(t0; . . . ; t6), one can see
that the deviation in amplitude dissipates while the deviation in phase does not.

B. Oscillators

Oscillators generate a reference signal at a particular fre-
quency. In some oscillators, referred to as voltage-controlled
oscillators (VCO’s), the frequency of the output varies propor-
tionally to some input signal. Compared to mixers, oscillators
seem quite simple. That is an illusion.

Oscillators are generally used in RF circuits to generate the
LO signal for mixers. The noise performance of the mixer is
strongly affected by noise on the LO signal. The LO is always
passed through a limiter, which is generally built into the
mixer, to make the mixer less sensitive to small variations in
the amplitude of the LO. However, the mixer is still sensitive
to variations in the phase of the LO. Thus, it is important to
minimize the phase noise produced by the oscillator.

Nonlinear oscillators naturally produce high levels of phase
noise. To see why, consider the trajectory of an oscillator’s
stable periodic orbit in state space. Furthermore, consider
disturbing the oscillator by applying an impulse .
The oscillator responds by following a perturbed trajectory

, as shown in Fig. 7, where represents the
unperturbed solution and is the perturbation in the
response.

Decompose the perturbed response into amplitude and phase
variations

(5)

where represents the noisy output voltage of the oscillator,
represents the variation in amplitude, is the variation

in phase, and is the oscillation frequency.
Since the oscillator is stable and the duration of the distur-

bance is finite, the deviation in amplitude eventually decays
and the oscillator returns to its stable orbit. In effect, there is a
restoring force that tends to act against amplitude noise. This
restoring force is a natural consequence of the nonlinear nature
of the oscillator and at least partially suppresses amplitude
variations, as shown in Fig. 8. With linear oscillators, there
is no restoring force, and so the amplitude is arbitrary (i.e.,
they do not have stable orbits). As such, linear oscillators
exhibit equal amounts of amplitude and phase noise because
the amplitude noise is not suppressed.

Since the oscillator is autonomous, any time-shifted ver-
sion of the solution is also a solution. Once the phase has
shifted due to a perturbation, the oscillator continues on as
if never disturbed except for the shift in the phase of the

(a) (b) (c)

Fig. 8. (a) A linear oscillator along with (b) its response to noise and (c)
the response of a nonlinear oscillator to a noise. The arrows are phasors
that represents the unperturbed oscillator output, the carriers, and the circles
represent the response to perturbations in the form of noise. With a linear
oscillator, the noise simply adds to the carrier. In a nonlinear oscillator,
the nonlinearities act to control the amplitude of the oscillator and so to
suppress variations in amplitude, thereby radially compressing the noise ball
and converting it into predominantly a variation in phase.

oscillation. There is no restoring force on the phase, and so
phase deviations accumulate. This is true for both linear and
nonlinear oscillators. Notice that there is only one degree of
freedom—the phase of the oscillator as a whole. There is
no restoring force when the phase of all signals associated
with the oscillator shift together; however, there would be a
restoring force if the phase of signals shifted relative to each
other. This is important in oscillators with multiple outputs,
such as quadrature oscillators or ring oscillators. The dominant
phase variations appear identically in all outputs, whereas
relative phase variations between the outputs are naturally
suppressed by the oscillator or added by subsequent circuitry
and so tend to be much smaller [8].

After being disturbed by an impulse, the asymptotic re-
sponse of the amplitude deviation is as .
However, the asymptotic response of the phase deviation is

. If responses that decay are neglected, then
the impulse response of the phase deviation can be
approximated with a unit step . Thus, the phase shift over
time for an arbitrary input disturbance is

(6)

or the power spectral density (PSD) of the phase is

(7)

The disturbance may be either deterministic or random in
character and may result from extraneous signals coupling into
the oscillator or from variations in the components that make
up the oscillator, such as thermal, shot, and flicker noise.

If is white noise, then is proportional to
. This result has been shown here to apply at low

frequencies, but with a more detailed derivation it can also
be shown to be true over a broad range of frequencies [21].
Assume that is white and define such that

(8)

where is the oscillation or carrier frequency. is
the PSD of the phase variable in (5). Phase cannot easily be
observed directly, so instead one is often interested in, the
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Fig. 9. Two different ways of characterizing noise in the same oscillator.
S� is the spectral density of the phase andSv is the spectral density of the
voltage.Sv contains both amplitude and phase-noise components, but with
oscillators the phase noise dominates except at frequencies far from the carrier
and its harmonics.Sv is directly observable on a spectrum analyzer, whereas
S� is only observable if the signal is first passed through a phase detector.
Another measure of oscillator noise isL, which is simplySv normalized to
the power in the fundamental.

PSD of . Near the fundamental [9], [21], [23], [57]

(9)

where is the frequency offset from the fundamental and
is the first Fourier coefficient for

(10)

This spectrum is a Lorentzian, as shown in Fig. 9. The corner
frequency is known as the linewidth of the oscillator and
is given by , with

(11)

As , the phase of the oscillator drifts without bound,
so as . However, even as the phase
drifts without bound, the excursion in the voltage is limited by
the diameter of the limit cycle of the oscillator [represented
by the periodic function in (5)]. Therefore, as ,
the PSD of flattens out and ,
which is inversely proportional to. Thus, the larger , the
more phase noise, the broader the linewidth, and the lower the
signal amplitude within the linewidth. This happens because
the phase noise does not affect the total power in the signal;
it only affects its distribution. Without phase noise, is
a series of impulse functions at the harmonics of. With
phase noise, the impulse functions spread, becoming fatter and
shorter but retaining the same total power [9].

It is more common to report oscillator phase noise as, the
ratio of the single-sideband (SSB) phase-noise power to the
power in the fundamental (in dBc/Hz)

(12)

At frequencies where the oscillator phase noise dominates over
the amplitude noise and that are also outside the linewidth

, the phase noise is approximated with1

for

(13)
1Other references report thatL(fm) = S�(fm)=2, which is true whenS�

is the single-sided PSD [48], [61]. Here,S� is the double-sided PSD.

The rolloff in and as is a
result of the circuit’s responding in a nonlinear fashion to the
noise itself. As such, it cannot be anticipated by the small-
signal noise analyses that will be presented in Section V-B.
However, as can be seen from Fig. 9, does not roll off at
low frequencies, so these analyses along with (13) can be used
to compute at low frequencies.

Phase noise acts to vary the period of the oscillation,
a phenomenon known as jitter. Assume thatis a white
stationary process. Then its variance is constant, and from
(6) the variance of increases linearly with time. Demir [9]
shows that the variance of a single period is, where is
defined in (8) and . The jitter is the standard
deviation of the length of periods, so

(14)

In the case where represents flicker noise, is generally
pink or proportional to . Then would be proportional
to at low frequencies [22]. In this case, there are no
explicit formulas for and or and at low offset
frequencies.

IV. RF ANALYSES

SPICE provides several different types of analyses that
have proven themselves essential to designers of baseband
circuits. These same analyses are also needed by RF designers,
except they must extended to address the issues described in
Section II and the circuits of Section III. The basic SPICE
analyses include dc, ac, noise, and transient. RF versions of
each have been developed in recent years based on two differ-
ent foundations: harmonic balance and shooting methods. Both
harmonic balance and shooting methods started off as methods
for computing the periodic steady-state solution of a circuit but
have been generalized to provide all the functionality needed
by RF designers. In their original forms, they were limited to
relatively small circuits. Recently, Krylov subspace methods
have been applied to accelerate both harmonic balance and the
shooting methods, which allows them to be applied to much
larger circuits [13], [30], [33], [58], [60], [61].

A. Periodic and Quasi-Periodic Analysis

Periodic and quasi-periodic analyses can be thought of as RF
extensions of SPICE’s dc analysis. In dc analysis, one applies
constant signals to the circuit and it computes the steady-
state solution, which is the dc operating point about which
subsequent small-signal analyses are performed. Sometimes,
the level of one of the input signals is swept over a range,
and the dc analysis is used to determine the large-signal dc
transfer curves of the circuit.

With periodic and quasi-periodic analyses, the circuit is
driven with one or more periodic waveforms and the steady-
state response is computed. This solution point is used as
a periodic or quasi-periodic operating point for subsequent
small-signal analyses. In addition, the level of one of the input
signals may be swept over a range to determine the power
transfer curves of the circuit.
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Periodic and quasi-periodic analyses are generally used to
predict the distortion of RF circuits and to compute the oper-
ating point about which small-signal analyses are performed
(presented later). When applied to oscillators, periodic analysis
is used to predict the operating frequency and power and can
also be used to determine how changes in the load affect these
characteristics (load pull).

Quasi-periodic steady-state (QPSS) analyses compute the
steady-state response of a circuit driven by one or more large
periodic signals. The steady-state or eventual response is the
one that results after any transient effects have dissipated. Such
circuits respond in steady state with signals that have a discrete
spectrum with frequency components at the drive frequencies,
at their harmonics, and at the sum and difference frequencies
of the drive frequencies and their harmonics. Such signals are
called quasi-periodic and can be represented with a generalized
Fourier series

(15)

where are Fourier coefficients and and are fundamen-
tal frequencies. For simplicity, a 2-fundamental quasi-periodic
waveform is shown in (15), though quasi-periodic signals can
have any finite number of fundamental frequencies. If there
is only one fundamental, the waveform is simply periodic.
and are assumed to be noncommensurate, which means that
there exists no frequency such that both and are exact
integer multiples of . If and are commensurate, then

is simply periodic.
The choice of the fundamental frequencies is not unique.

Consider a down-conversion mixer that is driven with two
periodic signals at and , with the desired output at

. The circuit responds with a 2-fundamental
quasi-periodic steady-state response where the fundamental
frequencies can be and , and , or and

. Typically, the drive frequencies are taken to be the
fundamentals, which in this case are and . With an up-
conversion mixer, the fundamentals would likely be chosen to
be and .

As discussed in Section II-A, computing signals that have
the form of (15) with traditional transient analysis would
be very expensive if and are widely spaced so that

or if they are closely spaced
so that . Large-signal steady-
state analyses directly compute the quasi-periodic solution
without having to simulate through long time constants or
long beat tones (the beat tone is the lowest frequency present
excluding dc). The methods generally work by directly com-
puting the Fourier coefficients . To make the computation
tractable, it is necessary for all but a small number of Fourier
coefficients to be negligible. These coefficients would be
ignored. Generally, we can assume that all but the first
harmonics and associated cross terms of each fundamental

are negligible. With this assumption,
coefficients remain to be calculated, which is still a large
number if the number of fundamentals is large. In practice,
these methods are typically limited to a maximum of three or
four fundamental frequencies.

1) Harmonic Balance:Harmonic balance [27], [30], [36],
[47] formulates the circuit equations and their solution in
the frequency domain. The solution is written as a Fourier
series that cannot represent transient behavior, and so harmonic
balance directly finds the steady-state solution. Consider

(16)

This equation is capable of modeling any lumped time-
invariant nonlinear system; however, it is convenient to think
of it as being generated from nodal analysis, and so repre-
senting a statement of Kirchhoff’s current law for a circuit
containing nonlinear conductors, nonlinear capacitors, and
current sources. In this case, is the vector of
node voltages, represents the current out of the
node from the conductors, represents the charge out of
the node from the capacitors, and represents the current
out of the node from the sources. To formulate the harmonic
balance equations, assume that and are -periodic
and reformulate the terms of (16) as a Fourier series

(17)

where is the fundamental frequency, and

(18)

Since and are linearly independent over a
period if then for each individually, and
so (17) can be reformulated as a system of equations, one for
each harmonic . To make the problem numerically tractable,
it is necessary to consider only the first harmonics. The
result is a set of complex equations and

complex unknowns that are typically solved using
Newton’s method [27].

It is, in general, impossible to directly formulate models for
nonlinear components in the frequency domain. To overcome
this problem, nonlinear components are usually evaluated
in the time domain. Thus, the frequency-domain voltage is
converted into the time domain using the inverse Fourier
transform, the nonlinear component (and ) is evaluated in
the time domain, and the current or charge is converted back
into the frequency domain using the Fourier transform.

2) Autonomous Harmonic Balance:An extremely impor-
tant application of harmonic balance is determining the steady-
state behavior of oscillators. However, as presented, harmonic
balance is not suitable for autonomous circuits such as oscilla-
tors. The method was derived assuming the circuit was driven,
which made it possible to know the operating frequency in
advance. Instead, it is necessary to modify harmonic balance
to directly compute the operating frequency by adding the
oscillation frequency to the list of unknowns and adding an
additional equation that constrains the phase of the computed
solution [27].

3) Quasi-Periodic Harmonic Balance:A two-fundamental
quasi-periodic signal takes the form

(19)
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where and are the fundamental frequencies. Rearranging
(19) shows this to be equivalent to constructing the waveform
as a conventional Fourier series where the frequency of each
term is an integer multiple of , except that the Fourier
coefficients themselves are time varying. In particular, the
coefficient is periodic with period and can
itself be represented as a Fourier series

(20)

Define such that with being
periodic in and periodic in . In this way a two-

dimensional version of is created where temporal dimensions
are associated with the time scales of each of the fundamental
frequencies. Then

(21)

This is a two-dimensional Fourier series, and soand are
related by a two-dimensional Fourier transform.

Using these ideas, we can reformulate (16) in terms of
and

(22)
or

(23)

Assuming that and of (23) take the form of (21)

(24)

where

(25)

The terms in (24) are linearly independent over allassuming
that and are noncommensurate (share no common
period). So for each . This becomes finite-
dimensional by bounding and . When evaluating

and , the multidimensional discrete Fourier transform is
used.

Using a multidimensional Fourier transform is just one way
of formulating harmonic balance for quasi-periodic problems
[49], [66]. It is used here because of its simple derivation
and because it introduces ideas that will be used later in
Section IV-C. An alternate approach that is generally preferred
in practice is the false frequency method, which is based on a
one-dimensional Fourier transform [18], [27].

4) Shooting Methods:Traditional SPICE transient analysis
solves initial-value problems. A shooting method is an iterative
procedure layered on top of transient analysis that is designed
to solve boundary-value problems. Boundary-value problems
play an important role in RF simulation. For example, assume
that (16) is driven with a nonconstant-periodic stimulus. The

-periodic steady-state solution is the one that also satisfies
the two-point boundary constraint

(26)

Define the state transition function as the solution
to (16) at given that it starts at the initial state at

. In general, one writes

(27)

Shooting methods combine (26) and (27) into

(28)

which is a nonlinear algebraic problem, and so Newton meth-
ods can be used to solve for . The combination of the
Newton and shooting methods is referred to as the shooting-
Newton algorithm.

When applying Newton’s method to (28), it is necessary to
compute both the response of the circuit over one period and
the sensitivity of the final state with respect to changes in
the initial state . The sensitivity is used to determine how
to correct the initial state to reduce the difference between the
initial and final state [2], [58].

5) Autonomous Shooting Methods:As with harmonic bal-
ance, it is extremely important to be able to determine the
steady-state behavior of oscillators. To do so it is necessary
to modify shooting methods to directly compute the period of
the oscillator. The period is added as an extra unknown, and
an additional equation is added that constrains the phase of
the computed solution [27].

6) Quasi-Periodic Shooting Methods:As shown in (20), a
two-fundamental quasi-periodic signal can be interpreted as
a periodically modulated periodic signal. Designate the high-
frequency signal as thecarrier and the low-frequency signal
as themodulation.If the carrier is much higher in frequency
than the modulation, then the carrier will appear to vary
only slightly from cycle to cycle. In this case, the complete
waveform can be inferred from knowledge of a small number
of cycles of the carrier appropriately distributed over one
period of the modulation. The number of cycles needed can be
determined from the bandwidth of the modulation signal. If the
modulation signal can be represented usingharmonics, then
the entire quasi-periodic signal can be recovered by knowing
the waveform over 2 1 cycles of the carrier that are evenly
distributed over the period of the modulation. This is the basic
idea behind the mixed frequency-time (MFT) method [13],
[26], [27].

Consider a circuit driven by two periodic signals that
responds in steady-state by producing two-fundamental quasi-
periodic waveforms as in (15). Designate the fundamental
frequencies as and and consider the case where
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Fig. 10. The sample envelope is the waveform that results from sampling a
signal with a period equal to that of the carrier.

.2 This may be because one input is a high-frequency signal
and the other is a low-frequency signal, as would be the case
with an up-conversion mixer. Or it may be that both inputs
are high-frequency signals but their frequencies are close to
each other and so they generate a low beat frequency, as
with a down-conversion mixer. Designate as the carrier
frequency and as the modulation frequency. Then is
the quasi-periodic response, where

(29)

Consider sampling the signal at the carrier frequency.
The sampled signal is referred to as the sample envelope and
is related to the continuous signal by , where

. represents a sampled and perhaps scaled version
of the modulation signal.

The MFT method works by computing the discrete sequence
instead of the continuous waveform. Notice that if every
is related to the subsequent sample point by

(30)

then all the will satisfy the circuit equations. The transition
function in (30) can be computed by standard SPICE transient
analysis and serves to translate between the continuous signal
and the discrete representation. The key to the MFT method
is to require that the samples represent a sampled quasi-
periodic signal. This requirement is easily enforced because, as
shown in Fig. 10, sampling a two-fundamental quasi-periodic
signal at the carrier frequency results in a sampled waveform
that is one-fundamental quasi-periodic, or simply periodic,
at the modulation frequency. In other words, the sampled
waveform can be written as a Fourier series with the carrier
removed

(31)

Alternatively, one can write

(32)

which states that is the inverse Fourier transform of .
Consider the th sample interval and let be the
solution at the start of the interval and be
the solution at the end. Then, (30) uses the circuit equations
to relate the solution at both ends of the interval

(33)
2The MFT method does not require thatf1 � f2. However, if true,

using MFT gives significant performance advantages over traditional transient
analysis.

Define as the function that maps the sequenceto the
sequence by repeated application of (33)

(34)

Let and ( and are the Fourier
transforms of and ). Then, from (31) and since

(35)

or

(36)

where is referred to as the delay matrix. It is a diag-
onal matrix with being the th diagonal element.
Equation (36) is written in the time domain as

(37)

Together, (34) and (37) make up the MFT method, where
(34) stems solely from the circuit equations and (37) solely
from the requirement that represent a sampled quasi-periodic
waveform. They can be combined into

(38)

or

(39)

Equation (39) is an implicit nonlinear equation that can be
solved for using Newton’s method.

In practice, the modulation signals in the circuit are band-
limited, and so only a finite number of harmonics is needed.
Thus, the envelope shown in Fig. 10 can be completely
specified by only a few of the sample points. With only
harmonics needed, (39) is solved over 2 1 distinct intervals
using shooting methods. In particular, if the circuit is driven
with one large high-frequency periodic signal at and one
moderately sized sinusoid at, then the number of harmonics
needed is small and the method is efficient. The total
simulation time is proportional to the number of harmonics
needed to represent the sampled modulation waveform and is
independent of the period of the low-frequency beat tone or
the harmonics needed to represent the carrier.

B. Small-Signal Analyses

The ac and noise analyses in SPICE are referred to as small-
signal analyses. They assume that a small signal is applied
to a circuit that is otherwise at its dc operating point. Since
the input signal is small, the response can be computed by
linearizing the circuit about its dc operating point (apply a
Taylor series expansion about the dc equilibrium point and
discard all but the first-order term). Superposition holds, so the
response at each frequency can be computed independently.
Such analyses are useful for computing the characteristics of
circuits that are expected to respond in a near-linear fashion
to an input signal and that operate about a dc operating point.
This describes most “linear” amplifiers and continuous-time
filters.

The assumption that the circuit operates about a dc operating
point makes these analyses unsuitable for circuits that are
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expected to respond in a near-linear fashion to an input
signal but that require some type of clock signal to operate.
Mixers fit this description, and if one considers noise to
be the input, oscillators also fit. However, there is a wide
variety of other circuits for which these assumptions also
apply, such as samplers and sample-and-holds, switched-
capacitor and switched-current filters, chopper-stabilized and
parametric amplifiers, frequency multipliers and dividers, and
phase detectors. These circuits, which are referred to as a
group as clocked circuits, require the traditional small-signal
analyses to be extended such that the circuit is linearized
about a periodically varying operating point. Such analyses
are referred to as linear periodically varying (LPV) analyses.

A great deal of useful information can be acquired by
performing a small-signal analysis about the time-varying
operating point of the circuit. LPV analyses start by performing
a periodic analysis to compute the periodic operating point
with only the large clock signal applied (the LO, clock, carrier,
etc.). The circuit is then linearized about this time-varying
operating point (expand about the periodic equilibrium point
with a Taylor series and discard all but the first-order term)
and the small information signal is applied. The response is
calculated using linear time-varying analysis.

Consider a circuit whose input is the sum of two periodic
signals, , where is an arbitrary
periodic waveform with period and is a sinusoidal
waveform of frequency whose amplitude is small. In
this case, represents the large clock signal and
represents the small information signal.

Let be the steady-state solution waveform when
is zero. Then allow to be nonzero but small. We can
consider the new solution to be a perturbation on

, as in . The small-signal solution
is computed by linearizing the circuit about ,

applying , and then finding the steady-state solution.
Given that

(40)

the perturbation in steady-state response is given by

(41)

where is the large-signal fundamental frequency
[39], [61]. represents the sideband for theth harmonic
of . In this situation, shown in Fig. 11, there is only
one sideband per harmonic becauseis a single frequency
complex exponential and the circuit has been linearized. This
representation has terms at negative frequencies. If these terms
are mapped to positive frequencies, then the sidebands with

become lower sidebands of the harmonics ofand
those with become upper sidebands.

is the transfer function for the input at to the
output at . Notice that with periodically varying linear
systems there are an infinite number of transfer functions
between any particular input and output. Each represents a
different frequency translation.

Fig. 11. The steady-state response of a linear periodically varying system to
a small complex exponential stimulus. The large signals are represented with
solid arrows and the small signals with hollow arrows.

Versions of this type of small-signal analysis exist for both
harmonic balance [17], [24], [31] and shooting methods [39],
[40], [61].

There are two different ways of formulating a small-signal
analysis that computes transfer functions [59], [61]. The first
is akin to traditional ac analysis and is referred to here as
a periodic ac (PAC) analysis. In this case, a small-signal
is applied to a particular point in the circuit at a particular
frequency, and the response at all points in the circuit and
at all frequencies is computed. Thus, in one step one can
compute the transfer function from one input to any output.
It is also possible to do the reverse, compute the transfer
functions from any input to a single output in one step
using an “adjoint” analysis. This is referred to as a periodic
transfer function (PXF) analysis. PAC is useful for predicting
the output sidebands produced by a particular input signal,
whereas PXF is best at predicting the input images for a
particular output.

Small-signal analysis is also used to perform cyclostationary
noise analysis [8], [40], [52], which is an extremely important
capability for RF designers [57]. It is referred to as a periodic
noise (PNoise) analysis and is used to predict the noise
figure of mixers. PNoise analysis is also used to predict the
phase noise of oscillators. However, this is a numerically ill-
conditioned problem that requires special techniques in order
to overcome the ill conditioning and accurately compute close-
in phase noise [21], [22].

LPV analyses provide significant advantages over trying
to get the same information from equivalent large-signal
analyses. First, they can be much faster. Second, a wider
variety of analyses are available. For example, noise analysis is
much easier to implement as a small-signal analysis. Last, they
can be more accurate if the small signals are very small relative
to the large signals. Small signals applied in a large-signal
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analysis can be overwhelmed by errors that stem from the large
signals. In a small-signal analysis, the large and small signals
are applied in different phases of the analysis. Small errors in
the large-signal phase typically have only a minor effect on
the linearization and hence the accuracy of the small-signal
results.

All of the small-signal analyses are extensible to the case
where the operating point is quasi-periodic. This is important
when predicting the effect of large interferers or blockers and is
discussed further in Section VI-C. Such analyses are referred
to as linear quasi-periodically varying (LQPV) analyses as a
group, or individually as QPAC, QPXF, QPNoise, etc.

C. Transient-Envelope Analyses

Transient-envelope analyses are applied to simulate mod-
ulated carrier systems when the modulation is something
other than a simple sinusoid or combination of sinusoids.
They do so by performing a series of linked large-signal
pseudoperiodic analyses, which are periodic analyses that
have been modified to account for slow variations in the
envelope over the course of each period of the carrier as a
result of the modulation. The pseudoperiodic analyses must be
performed often enough to follow the changes in the envelope.
In effect, transient-envelope methods wrap a conventional
transient analysis algorithm around a modified version of a
periodic analysis. Thus, the time required for the analysis
is roughly equal to the time for a single periodic analysis
multiplied by the number of time points needed to represent
the envelope. If the envelope changes slowly relative to the
period of the carrier, then transient-envelope simulation can
be very efficient relative to traditional transient analysis.

Transient-envelope methods have two primary applications.
The first is predicting the response of a circuit when it is driven
with a complicated digital modulation. An important prob-
lem is to determine the interchannel interference that results
from intermodulation distortion. Simple intermodulation tests
involving a small number of sinusoids as can be performed
with quasi-periodic analysis are not a good indicator of how
the nonlinearity of the circuit couples digitally modulated
signals between adjacent channels. Instead, one must apply the
digital modulation, simulate with transient-envelope methods,
and then determine how the modulation spectrum spreads into
adjacent channels.

The second important application of transient-envelope
methods is to predict the long-term transient behavior of
certain RF circuits. Examples include the turn-on behavior
of oscillators, power supply droop or thermal transients in
power amplifiers, and the capture and lock behavior of phase-
locked loops. Another important example is determining the
turn-on and turn-off behavior of time-division multiple access
transmitters, which broadcast during a narrow slice of time.
During that interval the transmitter must power up, stabilize,
send the message, and then power down. If it powers up and
down too slowly, the transmitter does not work properly. If
it powers up and down too quickly, the resulting spectrum
will be too wide to fit in the allotted channel. Simulating with
traditional transient analysis would be prohibitively expensive

because the time slice lasts on the order of 10–100 ms and
the carrier frequency is typically at 1 GHz or greater.

1) Fourier Envelope Method:With the Fourier envelope
method, the envelope is represented by slowly varying Fourier
coefficients. First developed by Sharrit and referred to as cir-
cuit envelope [55], the Fourier envelope method is a transient-
envelope method based on harmonic balance. In Section V-A,
the concept of harmonic balance with time-varying Fourier
coefficients was introduced. In that case, the Fourier coeffi-
cients were assumed to be periodic, with the result that signals
themselves were quasi-periodic. With the Fourier envelope
method [12], [38], [48], the Fourier coefficients in (20) are time
varying but are not necessarily periodic. Instead, the Fourier
coefficients are taken to be slowly varying transient
waveforms. Thus, signals take the form

(42)

where is the fundamental frequency of the base Fourier
series. represents the complex modulation of theth
harmonic. must vary slowly relative to because if the
bandwidth of becomes greater than , then the sidebands
of adjacent harmonics begin to overlap and the representation
is not unique.

Now, rewrite (16) assuming that and take the form of
(42)

(43)

where

(44)

Assume that the variations in are slow enough so that the
bandwidth of each term in (44) is much less than ; then
the terms associated with each harmonicwill sum to zero
individually. Then for each , or in vector
form

(45)

where is a diagonal matrix with on the th diagonal.
As with transient analysis, discretization methods such as
trapezoidal rule or the backward difference formulas replace

with a finite-difference approximation, converting (45)
to a system of nonlinear algebraic equations that is solved
with Newton’s method. For example, applying backward Euler
converts (45) to

(46)
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and are evaluated at by converting
into the time domain using the inverse Fourier trans-

form, passing the time-domain voltage waveform through
and , and converting the resulting current and charge
waveforms back into the frequency domain using the forward
Fourier transform. This procedure relies on the envelope’s
being essentially constant over the length of a cycle of the
carrier.

One of the important strengths of harmonic balance is its
ability to easily incorporate frequency-domain models for the
linear components such as lossy or dispersive transmission
lines. Unfortunately, this is not true with the Fourier envelope
method. The transient nature of the modulations intro-
duces the same difficulties that are present with distributed
components in transient analysis, which are addressed using
similar techniques. In particular, one can use convolution
[20], [54], or the model for the distributed component can be
separated into delay and dispersion, with the dispersion being
replaced by a lumped approximation [56].

As the distributed components are linear, the sidebands for
each harmonic can be treated individually. Thus, a separate
model is generated for each harmonic, which greatly reduces
the bandwidth requirements on the models. The model for
each harmonic must only be valid over the bandwidth of
the sidebands associated with that harmonic. In RF circuits,
the bandwidths of the sidebands are usually small relative to
the carrier frequency, and so generating models of distributed
components for use in the Fourier envelope method is much
easier than for conventional transient analysis. In fact, it is not
uncommon for the bandwidth of an RF circuit to be so small
that the transfer function of a distributed component does not
change appreciably over the bandwidth of the sidebands. In
this case, the transfer function is taken to be constant.

2) Sample Envelope Method:With the sample envelope
method, the envelope is represented by a slowly varying
sampled version of the waveform, as shown in Fig. 10. First
developed by Petzold and referred to as envelope following
[41], it is a transient-envelope method based on shooting
methods. It approximates the sample envelope of Fig. 10 as a
piecewise polynomial [25], [41] in a manner that is analogous
to conventional transient analysis. This approach is efficient
if the sequence formed by sampling the state at the beginning
of each clock cycle, , , , , changes
slowly as a function of . A “differential-like” equation is
formed from (27)

(47)

where is a measure of the
time-derivative of the sample envelope at . We can apply
traditional integration methods to compute an approximation
to the solution using a procedure that involves solving (47)
at isolated time points. If the sample envelope is accurately
approximated by a low-order polynomial, then this procedure
should allow us to skip many cycles and so find the solution
over a vast number of cycles in an efficient manner. For
RF circuits, (47) is stiff and so requires implicit integration

methods such as backward Euler, which can be written as

(48)

where is the timestep, which is measured in terms of cycles.
This equation represents a two-point boundary constraint on
(47), and so together they can be solved with shooting-Newton
methods to find . If desired, other integration methods
can be used, such as the backward-difference formula.

As with transient analysis, once is computed, it is
necessary to check that the trajectory is following the low-
order polynomial as assumed. If not, the point should be
discarded and the stepshould be reduced. If rapid changes
in the envelope are encountered, envelope following can
reduce its stepsize down to the point where no cycles are
skipped, in which case envelope following reduces to simple
transient analysis. Thus, envelope following does not suffer the
accuracy problems of the Fourier envelope method when small
timesteps are taken to resolve a rapidly changing envelope.

D. Other Methods

The methods described above are either currently available
or expected to be available soon in the mainstream commercial
RF simulators. However, there other methods that have the
potential to become significant to RF designers. In particular,
two families of methods seem promising: the Volterra methods
[31] and the multirate partial differential equation (MPDE)
methods [4], [51].

The Volterra methods are similar in concept to the small-
signal analyses in that they represent the circuit using a Taylor
series expansion, except they take into account more than just
the first term in the expansion. In this way, Volterra methods
can efficiently compute the response of circuits exhibiting a
small amount of distortion.

MPDE represents a family of methods based on the idea of
replacing the single time variable with a sum of time variables,
one for each of the time scales in the circuit. Consider a mixer
with a 1-GHz LO and a 100-MHz IF. Thenwould be replaced
with , where is associated with the LO and
is associated with the IF. The underlying ordinary differential
equations that describe the circuit are reformulated as partial
differential equations in and . The various MPDE methods
are formulated by applying particular boundary conditions and
numerical methods to the and dimensions. For example,
quasi-periodic harmonic balance from Section IV-A is an
MPDE method that applies periodic boundary conditions and
harmonic balance to both dimensions. Similarly, the Fourier
envelope method from Section IV-C is an MPDE method that
applies a periodic boundary condition and harmonic balance to
the dimension and an initial condition and transient analysis
to the dimension. Many other variations are possible.

V. COMPARING THE METHODS

All of the methods presented can be grouped into two broad
families: those based on harmonic balance and those based
on shooting methods. Most of the differences between the
methods emanate from the attributes of the base methods:
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harmonic balance and shooting methods. So only the base
methods will be compared.

A. Linear Passive Component Models

The main strength of harmonic balance is its natural support
for linear frequency-domain models. Distributed components
such as lossy and dispersive transmission lines and interpolated
tables of -parameters from either measurements or electro-
magnetic simulators are examples of linear models that are
handled easily and efficiently with harmonic balance.

The difficulty with which shooting methods handle dis-
tributed component models contrasts sharply with harmonic
balance. The problem is that the state vector associated with
distributed components is infinite-dimensional. The state vec-
tor must somehow be discretized before shooting methods
can be applied. However, even then shooting methods will
be expensive if the state vector is large [27], [28]. This
disadvantage explains why shooting-method-based RF simu-
lation techniques have mainly been applied to radio-frequency
integrated circuits (RFIC’s). Most RFIC’s can be modeled
completely with lumped components. New approaches for gen-
erating lumped equivalent models for distributed components
[35], [42], and components described in the frequency domain
such as with tables of-parameters [6], are becoming available
that are more reliable and effective than existing methods,
allowing shooting methods to be applied to circuits that contain
a small number of distributed components.

B. Nonlinearity

Harmonic balance is very accurate and very efficient if the
circuit is near linear and the voltage and current waveforms are
near sinusoidal. In fact, assuming that the component models
are correct, harmonic balance becomes exact in the limit where
the circuit is linear and the stimulus are sinusoidal. This is not
true for shooting methods. However, this feature is generally
only significant when trying to determine the distortion of
low-distortion amplifiers and filters. It does not help when
analyzing mixers, oscillators, and sampling circuits because
these circuits contain signals that are far from sinusoidal.

Harmonic balance can struggle on strongly nonlinear cir-
cuits or circuits that contain signals with abrupt transitions.
Such signals are common in RF circuits. For example, mixers
are driven with an LO that resembles a square wave, and
even sinusoidal oscillators contain current waveforms that are
narrow pulses. In this case, many frequencies are needed to
accurately represent the signal, which increases the expense of
harmonic balance. In addition, the magnitude of the harmonics
drops slowly for signals with sharp transitions, making it
difficult to know how many harmonics must be computed
by harmonic balance. If too few harmonics are included, the
results are inaccurate; if too many are included, the simulations
can be impractical.

Harmonic balance is also susceptible to convergence prob-
lems when applied to strongly nonlinear circuits. Convergence
can be improved by employing continuation or homotopy
methods [3], [27]. These methods initially reduce the power
of the input signal until convergence is achieved. Then the

power is stepped up in a sequence of harmonic balance
analyses, where the result computed at one step is used as
the starting point for the next to improve convergence. In this
way, harmonic balance can be made robust. However, because
continuation methods end up calling harmonic balance tens, or
perhaps hundreds, of times, they can be slow.

In contrast to harmonic balance, the ability of shooting
methods to handle circuits strongly is quite good. The strengths
of shooting methods stem from the properties of its under-
lying transient analysis. In particular, it chooses nonuniform
timesteps in order to control error, and it has excellent con-
vergence properties.

The ability of transient analysis, and so shooting meth-
ods, to place time points in a nonuniform manner allows
it to accurately and efficiently follow abruptly discontinuous
waveforms. Small timesteps can be used to accurately resolve
rapid transitions without taking small steps everywhere. This
is important for circuits such as mixers, relaxation oscillators,
switched-capacitor filters, and sample-and-holds. In addition,
the timestep is automatically chosen to control error. With
harmonic balance, the timestep is constrained to be uniform
by the fast Fourier transform (FFT); however, there is work
that explores the possibility of using new FFT algorithms that
do not require equally spaced points with harmonic balance
[10], [37].

The strong convergence properties of shooting methods
result from its implementation as a multilevel Newton method
and not from the fact that it is a time-domain method. Indeed,
it is possible to formulate harmonic balance as a time-domain
method [27], [60], yet its convergence properties do not
fundamentally change. As described in Section V-A, shooting
methods apply Newton’s method to solve

(49)

for . relates the initial state of the circuit
to the state one period later. Newton’s method is applied

to solve (49) and is both efficient and reliable if is a
near-linear function. This is usually the case even when the
underlying circuit is behaving in a strongly nonlinear fashion
because is evaluated over exactly a period of the large
periodic clock signal, the signal that is driving the circuit to
behave nonlinearly. Evaluating itself still involves solving
strongly nonlinear sets of equations; however, that is done
using transient analysis, a natural continuation method, and so
is quite robust.

The ability of shooting methods to converge on a large class
of strongly nonlinear circuits without the need for continuation
methods or other convergence aids represents a significant
advantage in efficiency over harmonic balance.

With shooting methods, it is natural to perform transient
analysis for a while before starting the shooting iteration
in order to generate a good starting point. This is usually
sufficient to get convergence even on troublesome circuits
except when the time constants in the circuit are much larger
than the period of the signal. If this is not sufficient, one can
also use continuation methods with shooting methods. The
initial transient analysis has the side benefit that it helps to
identify circuits that are unexpectedly unstable.
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VI. RF MEASUREMENTS

Simulators are used to predict the performance of RF
circuits before they are actually constructed. This section
introduces several of the most common RF measurements
used to verify performance, with a description of how these
measurements are made using an RF simulator. The measure-
ments presented are representative of the most important and
common measurements being made on RF circuits.

A. Transfer Functions

1) Conversion Gain:Conversion gain is the generalization
of gain to periodically varying circuits such as mixers. It is
simply the small-signal gain through a mixer as a function
of frequency. Typically, conversion gain refers to the transfer
function from the desired input to the desired output. But there
are many other transfer functions of interest, such as the gain
from an undesired image or from an undesired input such as
the LO, power, and bias supplies.

Remember that the output signal for a periodically varying
circuit such as a mixer may be at a different frequency than
the input signal. The transfer functions must account for this
frequency conversion. As described earlier, these circuits may
have many images, and so for a single output frequency there
may be many transfer functions from each input.

One measures a transfer function of a mixer by applying
the LO, computing the steady-state response to the LO alone,
linearizing the circuit about the LO, applying a small sinu-
soid, and performing one of the LPV analyses described in
Section IV-B, such as PAC or PXF. One might also want to
measure the transfer function with a large interferer present.
If the interferer is assumed periodic, then the circuit would be
linearized about the quasi-periodic response to both the LO
and the interferer, and a LQPV analysis such as QPAC or
QPXF is performed.

Actual measurements on mixers have shown that it is
possible to predict conversion gain to within 0.25 dB [7].

2) AM and PM Conversion:As shown in Fig. 11, when a
small sinusoid is applied to a periodically driven or clocked
circuit, the circuit responds by generating both the upper
and lower sidebands for each harmonic. The sidebands act
to modulate the harmonics, or carrier, and the relationship
between the sidebands and the carrier determines the character
of the modulation. In Fig. 12, both the carrier and its sidebands
are shown as phasors [50]. Assume that the sidebands are
small relative to the carrier and that the circuit is driven at
baseband with a small sinusoid with a frequency of. The
sideband phasors rotate around the end of the carrier phasor
at a rate of , with the upper sideband rotating one way and
the lower rotating the other. The composite of the sideband
phasors traces out an ellipse, as shown in Fig. 12(b). However,
if the two sidebands have identical amplitudes and their phase
is such that they align when parallel to the carrier, the phase
variations from each sideband cancel, with the result being
pure amplitude modulation (AM), as shown in Fig. 12(c).
If instead the amplitudes are identical but the phases align
when perpendicular to the carrier, then the amplitude variations
cancel and the result is almost purely a phase modulation (PM),

(a) (b) (c) (d)

Fig. 12. How the amplitude and phase relationship between sidebands causes
AM and PM variations in a carrier. The phasors with the hollow tips
represent the carrier, and those with the solid tips represent the sidebands.
The upper sideband rotates in the clockwise direction and the lower in the
counterclockwise direction. The composite trajectory is shown below the
individual components: (a) single-sideband modulation (only upper sideband),
(b) arbitrary double-sideband modulation where there is no special relationship
between the sidebands, (c) amplitude modulation (identical magnitudes and
phase such that phasors point in the same direction when parallel to carrier),
and (d) phase modulation (identical magnitudes and phase such that phasors
point in the same direction when perpendicular to carrier).

as shown in Fig. 12(d) (assuming the sidebands are small). The
double-sideband (DSB) modulation shown in Fig. 12(b) can be
considered a combination of both AM and PM modulation.

AM and PM conversion occurs either when a tone is injected
at either baseband or at a sideband. The former is referred to
as baseband-to-AM/PM conversion and the latter is SSB-to-
AM/PM conversion. Both cases were demonstrated in the case
of an oscillator by Razavi [43].

A PAC analysis directly computes the transfer function from
some small input signal to the upper and lower sidebands
components of a modulated carrier. It is also possible, using a
change of basis, to recast these transfer functions in terms of
the AM and PM components of the modulation [53]. To show
this, consider a circuit that is generating a sinusoidal carrier.
Assume that the carrier is both amplitude and phase modulated
by small complex exponentials at the same frequency. The
resulting signal would take the form

(50)

where is the amplitude modulation and
is the phase modulation. Both and are

complex coefficients. Using the narrow-band angle modulation
approximation [66], (50) can be expanded into a sum of
complex exponentials in order to identify the upper and lower
sidebands

(51)

(52)

where and . These can
be rearranged to give and in terms of and

(53)

(54)
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Thus, given the phase of the carrier, which can be computed
with a periodic steady-state analysis, and the transfer functions
from the input to the upper and lower sidebandsand ,
which can be computed with a periodic ac analysis, one can
compute the to-AM and to-PM transfer functions.

If the to-FM transfer function is desired instead, let
be the modulation signal where in (50)becomes

(55)

Then the to-FM transfer function is , or

(56)

3) Oscillator Load Pull: Load pull refers to shifts in the
frequency of an oscillator as a function of changes in load
impedance, supply voltage, substrate, bias lines, etc. A change
in load impedance represents a parametric change in the circuit
and so requires a full periodic steady-state analysis to compute
the response in the oscillation frequency. However, as long
as changes in the signal levels on supplies, substrates, and
bias lines are small, sensitivity of the oscillator frequency to
perturbations of this type can be computed using the technique
given above for computing the to-FM transfer function.

B. Cyclostationary Noise

With clocked systems, there are two effects that act to
complicate noise analysis. First, for noise sources that are
bias dependent, such as shot-noise sources in bipolar junction
transistors or the thermal noise of MOSFET’s, the time-
varying operating point acts to modulate the noise sources.
Such noise sources are referred to as being cyclostationary.
Second, the transfer function from the noise source to the
output is also periodically varying and so acts to modulate
the contribution of the noise source to the output. In this case,
even if the noise source were stationary, as it would be for
thermal noise of a linear time-invariant resistor, the noise at
the output is cyclostationary.

Modulation is a multiplication of signals in the time domain
and so in the frequency domain, the spectrum of the noise
source is convolved with the spectrum of the transfer function
[68]. The transfer function is periodic or quasi-periodic and
so has a discrete line spectrum. Convolution with a discrete
spectrum involves a series of scale, shift, and sum operations,
as shown for a mixer in Fig. 13. The final result is the sum
of the noise contributions from each source both up-converted
and down-converted by the harmonics of the LO to the desired
output frequency. This is referred to as noise folding.

Periodic modulation of a stationary noise source, either
from a periodic bias or from a periodically varying signal
path from the source to the output, results in cyclostationary
noise at the output. In stationary noise, there is no correlation
between noise at different frequencies. As can be seen from
Fig. 13, at frequencies separated by cyclostationary noise
is correlated, where is the modulation frequency and is
an integer [15].

Fig. 13. How noise is moved around by a mixer. The noise is replicated and
translated by each harmonic of the LO, resulting in correlations at frequencies
separated bykfLO.

1) Noise Figure: Noise is a critical concern in receivers
because of the small input signals. Typically, designers char-
acterize the noise of individual blocks using the noise figure
(NF) of the block because it is relatively simple to combine the
noise figure of cascaded blocks to determine the noise figure of
the entire receiver [44], [65]. The NF of a block is a measure
of how much the signal-to-noise ratio (SNR) degrades as the
signal passes through the block. It is defined as

NF
SNR
SNR

(57)

At the input of a receiver, the SNR is defined as the signal
power relative to the background noise power picked up by
the antenna. Fig. 6 shows that a receiver is sensitive to noise
at the input at each of its images. SNRonly includes the
noise power in the images where the input signal is found.
In heterodyne receivers, the input signal is found in a single
sideband, and so SSB NF is employed. In this case, SNR
includes only the noise power in the image associated with
the input. In homodyne, or direct-conversion, receivers, the
signal is found in both sidebands of the carrier, and so DSB
NF is employed. In this case, the images associated with the
carrier overlap, and SNRincludes the noise power from both.
In both cases, SNR includes the effect of the input noise
from all images; however, it excludes the noise generated in
the load at the output frequency.

In (57), the signal power is both in the numerator and the
denominator and so cancels out. Thus, (57) can be rewritten

NF (58)

where is the total output noise power, is the output
noise power that results from noise generated by the load
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at the output frequency, and is the output noise power
that results from noise generated by the source at the input
frequency. Generally, the used when computing DSB NF
is twice as large as the one used with computing SSB NF,
whereas and are both the same. Thus the DSB NF is
usually 3 dB smaller than the SSB NF for the same circuit.

One computes the noise of a mixer by applying the LO,
computing the steady-state response to the LO alone, lineariz-
ing the circuit about the LO, and applying the PNoise analysis
of Section IV-B. Actual measurements on bipolar mixers have
shown that noise figure can be predicted to within 0.25 dB
[7], [34]. Results are not expected to be as accurate on CMOS
mixers because the noise model for MOS transistors is not as
accurate as the one for bipolar transistors.

2) Impact of Cyclostationarity on Subsequent Stages:In
general, clocked circuits such as oscillators and mixers produce
cyclostationary noise, which implies that the noise statistics,
such as the PSD, denoted , varies as a periodic or quasi-
periodic function of time. If a spectrum analyzer is used to
observe this noise, and if the frequency of the noise variation
is much faster than the analyzer can track, then the spectrum
analyzer will measure the time-average PSD. Of course, the
time-average PSD is not a complete characterization of the
noise, but often it is sufficient. An important question is: When
is the time average PSD sufficient to characterize the output
noise of a circuit, and when is it not?

This question can be answered with the help of the follow-
ing observation. If an uncertainty in time is introduced into
the cyclostationary process—a uniformly distributed random
variable from zero to is added to —the resulting process
is stationary and its statistics are the time average of the
statistics of the cyclostationary process [15]. Similarly, if the
cyclostationary process is input to a system that does not
track the variation of the PSD with time, then the phase
of the variation is unknown to the system. In the absence
of information about the phase of the variation, the process
becomes stationary, with the PSD equal to the time average
of [62].

There are two common situations that would cause a subse-
quent stage to track the variations of a cyclostationary process.
The first occurs if the signal driving the subsequent stage is
large enough to generate a nonlinear response. This happens,
for example, when an oscillator drives a limiter. The oscillator
signal is large enough to drive the limiter into a nonlinear re-
gion, causing the characteristics of the limiter to track the vari-
ations in the cyclostationary noise produced by the oscillator.
The same is true when an oscillator drives a mixer. The second
situation is when both circuits are being driven by large signals
derived from the same reference. This would occur if, for ex-
ample, the output of one mixer were fed to the input of another
and both were driven by the same LO. Because they are driven
by the same LO, the second mixer is synchronous with, and
tracks the variations in the cyclostationary noise of, the first
mixer. In both of these cases, just knowing the time average
of is not sufficient to predict the noise performance
of the entire system. In particular, knowing the time-averaged
noise figure of each of the two mixers does not give sufficient
information to predict the noise figure of the cascaded pair.

However, in the case of the two mixers, if the second
mixer were driven with an independent LO, even one that
was close in frequency to the first LO, then the phase drift
between the two LO’s would cause the synchronism between
the two mixers to be lost, with the result that using the time-
average noise statistics is adequate when predicting the noise
performance of the whole system. Thus, in this case, if one
knows the time-averaged noise figures for the two mixers,
then one can predict the noise figure of the combination using
standard formulas [44], [65].

It is common to combine two mixers in cascade in a
superheterodyne receiver architecture and to generate the LO
signals for the two mixers by using two phase-locked loops
(PLL’s) with a common reference frequency. However, it
is interesting to note that even in this case, if the ratio of
the LO frequencies is , where and are relatively
large integers (often is sufficient) with no common
factors, then using the time average of the noise at the output
of the first mixer will usually introduce little error when
estimating the noise at the output of the second mixer [62].
In addition, interstage filtering also acts to reduce the chance
of error. Remember that noise sidebands must be correlated
for the noise to be cyclostationary. Filtering can convert a
cyclostationary signal to a stationary signal if the filter’s
bandwidth and center frequency are such that it eliminates
all but one sideband.

3) AM and PM Noise:As shown in Fig. 13, clocked cir-
cuits generate noise with correlated sidebands. And as shown
in Fig. 12, depending on the magnitude and phase of the
correlation, the noise at the output of the circuit can be AM
noise, PM noise, or some combination of the two. For example,
oscillators almost exclusively generate PM noise near the
carrier, whereas noise on the control input to a variable-gain
amplifier results almost completely in AM noise at the output
of the amplifier.

This ability to emphasize one type of noise over another
is a characteristic of clocked circuits and cyclostationary
noise. Linear time-invariant circuits driven by stationary noise
sources can only produce additive noise, which can be decom-
posed into AM and PM noise, but there will always be equal
amounts of both.

To find the AM or PM noise of a carrier, one must
perform PNoise analysis and output the noise at both the upper
and lower sidebands of the carrier along with their complex
correlation. The AM and PM components of the noise can
then be computed using (53) and (54).

4) Oscillator Phase Noise:One can apply the PNoise
analyses of Section IV-B to oscillators to compute their phase
noise. Or one can apply the PXF analysis to determine the
sensitivity of the output to small interfering signals such as
those on the power supply. As indicated earlier in this section,
these analyses are able to properly account for frequency
conversions and for the fact that the noise in the output
manifests itself largely as changes in the phase of the output.

These are small-signal analyses that assume that the circuit
being analyzed does not respond in a nonlinear way to the
small-signal inputs. However, (7) indicates that even small
inputs can generate large changes in the phase if they are close
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in frequency to the fundamental or to one of its harmonics.
While the deviation in oscillator phase is generally a linear
function of the input, the output voltage or current is a linear
function of the phase only when the deviations in phase
are small. If the phase changes by a significant fraction of
a period, the small-signal assumption is violated and the
response becomes a nonlinear function of the input. It is this
nonlinear response that causes the linewidth ofand [the
rolloff at very low offset frequencies that is given in (12)].
As a result, the small-signal analysis results do not predict the
linewidth and so are inaccurate for computing and at
frequencies very close to the carrier or its harmonics. Thus,
the small-signal PNoise analysis can only be used to compute

and for well above . Usually, is quite small,
and so this is not considered an issue. PNoise analysis can be
used to compute for all frequencies.

Actual measurements on oscillators have shown that it is
possible to predict oscillator phase noise on bipolar resonant
oscillators to within 2 dB [67].

5) Jitter and Phase Noise of PLL’s:Oscillators are fre-
quently encapsulated in phase-locked loops in order to stabilize
their output frequency and reduce their phase noise and jitter
by locking them to a more stable reference. The reference is
usually a fixed frequency, whereas the oscillator may need to
change its frequency, perhaps to allow the receiver to tune
over a range of channels. Complex feedback schemes are
often necessary to satisfy the often competing requirements
of frequency tuning resolution and noise performance [14].
Predicting the phase noise and jitter of such circuits can
be quite difficult. They rarely operate with simple periodic
or quasi-periodic signals, and so the PNoise and QPNoise
analyses cannot be directly applied. Even if they are periodic,
the frequency ratio between the oscillator and the reference
can be so large as to make these techniques impractical.
Transient-envelope methods could be applied, but like simple
transient analyses, the transient-envelope methods are not
set up to include the effect of component noise sources,
which play a large role in the noise and jitter of most
PLL’s. Attempts to include device noise in generic transient
and transient-envelope analyses generally fail because of the
small amplitude and wide bandwidth of device noise. Device
noise is usually much smaller than the simulator error that
masquerades as noise. To avoid this problem, tolerances must
be set very tight. To accurately model wide-band noise without
excessively coloring it, generally a very small and usually
fixed timestep is needed. Both of these combine to make this
approach impracticable in most cases.

PLL’s simulations often occur at the behavioral level rather
than at the transistor level because the transistor-level simula-
tions are very expensive and because behavioral simulation of
PLL’s can be quite effective. If the behavioral models can be
made to include the effect of component noise sources, they
can be used to efficiently predict the noise and jitter of PLL’s
[8], [29]. To do so, it is first necessary to individually charac-
terize the noise behavior of the blocks that make up the PLL
using transistor-level simulation. For each block, representa-
tive periodic signals are applied and a PNoise analysis is per-
formed. Then the jitter is extracted and provided as a parameter

Fig. 14. A narrow-band circuit driven with two closely spaced sinusoidal
tones (solid-tipped arrows) responds by generating harmonics (open-tipped
arrows) and intermodulation (hollow-tipped arrows) tones. Distortion of the
output signal results because several of the odd-order intermodulation tones
fall within the bandwidth of the circuit.

Fig. 15. The 1-dB compression point (CP1) is the point where the output
power of the fundamental crosses the line that represents the output power
extrapolated from small-signal conditions minus 1 dB. The third-order inter-
cept point (IP3) is the point where the third-order term as extrapolated from
small-signal conditions crosses the extrapolated power of the fundamental.

to behavioral models for inclusion in a high-level simulation of
the entire PLL. The noise and jitter of the PLL can be obtained
by observing the transition times in simulated output.

C. Intermodulation Distortion

Distortion is commonly measured in narrow-band circuits
by applying two pure sinusoids with frequencies well within
the bandwidth of the circuit (call these frequenciesand ).
The harmonics of these two frequencies would be outside the
bandwidth of the circuit; however, there are distortion products
that fall at the frequencies , , ,

, etc. As shown in Fig. 14 these frequencies should
also be well within the bandwidth of the circuit and so can
be used to measure accurately the intermodulation distortion
(IMD) produced by the circuit.

1) Compression and Intercept Points:At low frequencies,
it is common to describe the distortion of a circuit by indicating
the distortion in the output signal when driven by a sinusoid to
achieve a certain output level. At high frequencies, it is more
common to characterize the distortion produced by a circuit
in terms of a compression point or an intercept point. These
metrics characterize the circuit rather than the signal, and as
such it is not necessary to specify the signal level at which
the circuit was characterized.

To measure the compression point of a circuit, apply a
sinusoid to its input and plot the output power as a function
of the power of the input. The 1-dB compression point is
the point where the gain of the circuit has dropped 1 dB
from its small-signal asymptotic value. This is illustrated in
Fig. 15. CP is the input power andCP is the output
power that corresponds to the 1-dB compression point.CP
is normally used for receivers andCP for transmitters. The
compression point is typically measured in dBm, which is
decibels relative to one milliwatt.

To measure a two-toneth-order IMD intercept pointIP ,
apply two sinusoids to the circuit’s input at and . Make
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the amplitude of the two sinusoids the same and increase their
power while plotting the power at the output in a fundamental
(either or ) and in an th-order intermodulation product
(for IP use either or ). This is illustrated for
IP in Fig. 15. The th-order intercept pointIP is defined
in terms of the power levels of the fundamentals and theth-
order products as extrapolated from their asymptotic small-
signal behavior. When the input signal is small, a doubling
of the input power doubles the fundamental output power
and multiplies the output power of theth-order products
by 2 . Thus, the asymptotic slope of the fundamental is
1 dB/dB, and the asymptotic slope of theth-order products
is dB/dB. The th-order intercept point (IP ) is where the
asymptotes for the th-order intermodulation product and the
fundamental cross.IP is the input power and IP is the
output power corresponding to the intercept point. They are
generally measured in dBm.

In practice, it is only necessary to sweep the input power
to determine an appropriate input power for an accurate
extrapolation. should be chosen small enough that, the
output power of the first-order term, and , the output power
of the th-order term, are both in their asymptotic ranges.
Additionally, should be chosen large enough so that
and are computed accurately by the simulator. Once an
appropriate is applied and the corresponding and
found, the output intercept point is computed with

IP (59)

where IP is the th-order intercept point (dBm), is the
power in the fundamental in dBm, and is the difference
between the desired output signal and the undesiredth-
order output product in dB. is the input power
if IP is desired, and it is the output power if IP is
desired [65].

IP is the most commonly used intercept point but others,
including IP , IP , and IP , are also of interest.

Actual measurements on receivers have shown that it is
possible to predict a 1-dB compression point andIP to within
0.5 dB [7].

2) Rapid IP and IP Prediction: The traditional approach
to measuring intermodulation distortion is to apply two large
closely spaced test tones to the input and measure the inter-
modulation products. Both tones are large enough to generate
a nonlinear response from the circuit. Thus, at a minimum, a
two-tone QPSS analysis is required. If the circuit is clocked,
such as a mixer, a third tone is also needed, in this case the
LO. As such, it can be an expensive simulation. However, in
those cases where the intermodulation products of interest fall
at the frequencies , it is not necessary for both
test tones to be large to measure the intercept point. One tone

must be large to drive the circuit into a nonlinear region.
The second tone is needed only to produce an in-band
response by mixing with the distortion products generated by
the first tone. Thus, it is possible to measureIP or IP using a
small-signal analysis [58], and doing so is considerably more
efficient in terms of both time and memory than using a full
large-signal quasi-periodic analysis.

Fig. 16. In a receiver, the phase noise of the LO can mix with a large
interfering signal from a neighboring channel and swamp out the signal from
the desired channel even though most of the power in the interfering IF is
removed by the IF filter. This process is referred to asreciprocal mixing.

To computeIP or IP of an amplifier using this approach,
apply the first tone with power (in dBm) and perform a
PSS analysis to compute (in dBm), the power at the output
in the fundamental frequency. Then apply the second tone as
a small complex exponential at a sideband of the first tone
and use a PAC analysis to compute (in dB), the ratio
between the power at the output in the fundamental frequency
of the small tone and the power at the output in theth-order
intermodulation product.IP is then computed with (59).

The intermodulation distortion of a clocked circuit such as
a mixer is measured in a similar manner, except that both the
LO and the first tone are applied together and the response
computed with a QPSS analysis. The response to the second
tone is computed using a QPAC analysis.

In practice, this approach is limited to computingIP and
IP , but given that restriction, it can be used in the same
situations as the traditional approach and gets the same answer,
but is considerably faster.

3) Blockers: A blocker is a large interfering signal in a
nearby channel that acts to degrade the reception of the desired
signal. It does so in two ways: by reducing the gain and
increasing the noise floor of the receiver. A typical receiver,
shown in Fig. 1, has both an RF and IF filter. The RF filter
is always broader than the IF filter. Thus, a blocker is often
not eliminated until it has passed through the front end of
the receiver. If it is large enough to drive the front end
into compression, the effective gain for the desired signal is
reduced, which reduces the sensitivity of the receiver. The
effect of a blocker on gain can be determined by applying the
interferer, using a PSS or QPSS analysis to compute the time-
varying operating point, and then performing either a PAC or
QPAC analysis to compute the gain for the desired signal.

To see how a blocker acts to increase the noise floor,
consider its effect when it interacts with the phase noise from
the local oscillator of the mixer used in the front end of the
receiver, as shown in Fig. 16. The phase noise of the LO is
directly translated onto the mixer products in a process referred
to as reciprocal mixing. Although the IF filtering at the output
of the mixer may be sufficient to remove the blocker’s main
mixing product, the desired signal is masked by the phase noise
of the LO that was down-converted by the blocker. Thus, the
blocker acts to increase the noise floor of the receiver.

Reciprocal mixing is currently a difficult simulation because
it is a semiautonomous analysis. In other words, it is a
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TABLE I
VERILOG-A OSCILLATOR MODEL THAT INCLUDES PHASE NOISE

quasi-periodic analysis where one fundamental, the blocker,
is driven and one fundamental, the LO, is autonomous. While
conceptually possible, no simulator is currently available that
provides a semiautonomous analysis. So instead, one must
replace the oscillator with a nonautonomous equivalent model
and then perform a QPNoise analysis. The model must mimic
the phase noise produced by the oscillator. A Verilog-A [64]
model that includes phase noise is given in Table I. This
particular module does not include flicker noise, even though
it uses the function. Notice that the slope (the
second argument) is two. This causes the function to generate
noise whose power is proportional to , which matches the
characteristic of oscillator noise that stems from white noise
sources. It is not difficult to generalize this model to include
the effect of flicker noise; simply add in another
function, this time with a slope of three.

4) Spurious Responses:Spurious responses are undesired
responses to signals at the input of the receiver that occur
at frequencies that are different from the desired receive
frequency. The undesired images of Section III-A are an
example of spurious responses. However, there are additional
frequency ranges that can result in spurious responses if the
interfering signals encountered are at a sufficiently high level.
Any RF signal with a frequency that satisfies the following
relationship for any integers and could result in a spurious
response

(60)

where is any input frequency, is the LO frequency,
and is the desired IF frequency. Of particular importance
is the half-IF spurious response in which is either (2,

2) or ( 2, 2). This occurs at , midway
between the desired input frequency and that of the LO.
There are two possible causes for a half-IF response [44].
First is if the interfering input signal is subject to significant
amounts of second-order distortion and the LO contains a
significant second harmonic. In this case, the second harmonics
of the interferer and the LO will mix and generate a response
at the IF. The second possible cause is if the fundamental

Fig. 17. Intermodulation distortion in a power amplifier spreads the band-
width of the transmitted signal to the point where it can interfere with adjacent
channels.

of the interferer mixes with the fundamental of the LO and
the product, at , is subject to significant second-order
distortion. The half-IF response can be predicted fromIP
measurements [65].

5) Spectral Regrowth and ACPR:A very important issue
when transmitting digitally modulated signals is adjacent chan-
nel power (ACP). A transmitter should only emit power
in its designated channel. Any power emitted in adjacent
channels can interfere with the proper operation of nearby
receivers that are attempting to receive signals from distant
transmitters. As such, transmitters have strict adjacent channel
interference or ACP requirements that they must satisfy. The
low-pass filters in the transmitter of Fig. 2 are designed to
limit the bandwidth of the transmitted sequence. However, if
the mixers or power amplifier are nonlinear, intermodulation
distortion can cause the bandwidth to grow back, as shown
in Figs. 3 and 17. This effect is referred to as spectral
regrowth. Unfortunately, this situation is difficult to quantify
using simulation. Simple two-tone intermodulation tests are
not representative of digitally modulated signals. Instead, the
transmission of a long pseudorandom sequence of symbols is
simulated. The output spectrum is calculated from a sequence
that typically contains between 1- and 4-k symbols. The
adjacent channel power is then characterized with the adjacent
channel power ratio (ACPR)

ACPR (61)

where is the total power in the adjacent channel and
is the power in the desired channel.

The carrier frequencies are typically in the 1–5-GHz range
and the symbols typically have a rate of 10–300 kHz. Such a
simulation is clearly impractical for traditional transient anal-
ysis. Instead, the transient-envelope methods of Section IV-C
are used. However, simulating a 1–4-k symbol sequence still
requires between 10–100-k simulation points, each of which
represents a harmonic balance or shooting method solve, and
so even the transient envelope methods are very expensive for
this type of simulation, particularly for a circuit with more
than just a few components.

An alternative to transient-envelope simulations is to extract
a behavioral baseband-equivalent table model of the transmit-
ter using one of the large-signal steady-state methods described
in Section IV-A [5]. Because the behavioral model abstracts
away the carrier and unnecessary circuit details, the ACPR
calculation step is fast regardless of circuit size or complexity.
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In transmitter circuits, the input baseband signal is usually
well within the transmitter’s bandwidth, so a memoryless
model often suffices. This is important because it makes
generating the behavioral models fairly easy. A table model
is constructed by simply exercising the circuit over a range of
input amplitudes and phases and computing the steady-state
responses. This approach is accurate if the bandwidth of the
circuit is wide compared with the bandwidth of the signal.
Given the high carrier frequencies (1 GHz and above) and the
low signal bandwidths (1.23 MHz for the relatively broad-
band IS-95 CDMA standard), this assumption is relatively
safe. There is, however, one situation that will cause this
assumption to be violated: if low-frequency dynamics in either
the power-supply or the bias-supply lines significantly affect
the characteristics of the transmitter’s signal path. It is easy
to check for this situation using a periodic transfer function
analysis. Simply apply a large periodic signal to represent an
unmodulated carrier, and then perform the PXF analysis over a
range of frequencies centered about the carrier. If the transfer
functions are relatively constant over the signal bandwidth, it
is appropriate to use a memoryless table model. Otherwise, a
more sophisticated model or a transient-envelope simulation
is needed.

6) Triple Beats: The termtriple beat refers to three-tone,
third-order intermodulation distortion. Three-tone IMD in-
volves terms of the form , whereas the two-tone
IMD discussed earlier involves terms of the form
and . Interference caused by triple beats is 6 dB
higher than that caused by two-tone IMD [65]. Thus, if
there are only three tones, one can determine the size of the
triple beats rather simply from a two-tone IMD measurement.
However, if the number of tones becomes large, the number
of triple beats becomes very large. The number of triple beats
generated is , where is the number of
tones. Even for a moderate number of tones, it becomes an
arduous task to track the triple beats because of their numbers,
which makes estimation of triple-beat interference using this
approach difficult if not impossible when there are a large
number of tones.

7) Multichannel Systems:In modern cellular phone sys-
tems, the handset transmitters are power controlled, so the
power received at the basestation for each channel is roughly
the same. The receivers used in cable tuners and repeaters
and satellite communications also must operate properly in
the presence of a multitude of large carriers. In this setting,
distortion performance is often difficult to quantify because of
the large number of intermodulation distortion products. If we
consider only third-order nonlinearities, there are two types
of intermodulation distortion of concern: two-tone IMD and
three-tone IMD (triple beats). If there are a large number of
equally spaced and equally sized carriers, then two-tone IMD
is constant over the band while triple-beat distortion peaks in
the middle of the band [65]. In addition, there are many more
triple-beat products than two-tone products. These, combined
with the triple beats’ being twice as large as the two-tone
products, result in triple-beat IMD limiting the dynamic range
of multichannel systems more than two-tone IMD, particularly
in the center of the band.

Fig. 18. Spurious-free dynamic range or noise power ratio of a multichannel
system.

Dynamic range of multichannel systems is characterized
using a spurious-free dynamic range (SFDR) or noise-power
ratio (NPR) measurement, which is illustrated in Fig. 18. This
measurement mimics the situation where all channels are being
received at their maximum level. The transmitter assigned to
one channel near the middle of the band (where triple-beat
distortion is at its highest) is then turned on and off. SFDR
or NPR is the ratio of the power in that channel when the
transmitter is on relative to the power when it is off. When
the transmitter is off, the power in the channel is due to
intermodulation distortion caused by the other channels. SFDR
or NPR represents the dynamic range available in that channel.

In cable multichannel systems, simple transient analysis is
used to compute SFDR/NPR. However, in wireless multichan-
nel systems, the frequency of the lowest channel is much
greater than the channel spacing, and so transient-envelope
methods would be used. However, as with ACPR, this can
be a very expensive simulation, particularly if the carriers are
modulated. And as with ACPR, there are many cases where the
multichannel system being tested is broad-band. In this case,
it is possible to generate a memoryless table model as before
and efficiently evaluate the table model to predict SFDR/NPR.
Again, PXF analysis can be used to verify the broad-band
assumption.
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