Introduzione alla tecnologia AMS-S35 e all'uso di ADS

Sommario

- Tecnologia AMS-S35 (0,35 μm HBT BiCMOS)
- Ambiente ADS (Advanced Design System)
 - Struttura del programma
 - Flusso base di utilizzo
- Lab. 1: caratterizzazione di un transistore *nmosrf* Analisi DC e AC

Tecnologia AMS-S35

- Processo base: 0,35 µm 3P3M BiCMOS
 - Transistori bipolari high-speed HBT (Hetorojunction Bipolar Transistor) con base in SiGe
- Tensione alimentazione 3,3 V (standard) e 5 V (opzionale)
- 23÷31 maschere in base alle opzioni richieste (5 V HBT, 5 V CMOS, Thick Metal,...)

Tecnologia AMS-S35: cross section

Modelli per simulazione RF

- Simulazione circuiti RF richiede modelli molto accurati dei componenti attivi e passivi
- Estrazione modelli RF processo lungo e costoso
 - Viene effettuato solo per un sottoinsieme dei dispositivi realizzabili in una data tecnologia
 - Modelli RF risultano perciò validi solo per ben specificati intervalli dei relativi parametri geometrici
 - Vincolo nell'esplorazione dello spazio di progetto

Transistore bipolare verticale (1)

- VBIC (Vertical Bipolar InterCompany) model
- Dispositivi: npn#C#B#E, npn#C#B#EH5 (H5 opzione 5 V); esempi:
 - npn111 C-B-E (singoli contatti)
 - npn121 C-B-E-B (due contatti di base e singolo contatto di collettore)
 - npn232 C-B-E-B-E-B-C (tre contatti di base e due di collettore)
 - #E = #B -1 (nel caso di contatto multiplo di base)

Transistore bipolare verticale (2)

- Limiti validità:
 - *Frequenza* ≤ 20 GHz
 - *Larghezza emettitore* = 0,4 μm
 - *Lunghezza singolo emettitore* = 0,8÷24 μm
- Lunghezza effettiva di emettitore *L* si specifica attraverso parametro *AREA*
 - AREA fattore di scala per alcuni parametri del modello
 - Modello si riferisce lunghezza emettitore $L_0 = 1 \ \mu m$

 $-AREA = L/L_0$

Modello VBIC

Transistori pmosrf e nmosrf (1)

- Modello (*subcircuit*) che incorpora model BSIM3v3.1, pù resistenze parassite di *gate* e *substrato* oltre a quelle di *drain* e *source*
- Parametri modello sono scalati in base al numero di gate finger (#MOS in parallelo)

Transistori pmosrf e nmosrf (2)

- NMOS con più *gate finger* (*ng* = 4)
- 4 NMOS in parallelo
- Larghezza totale è ng volte quella di un singolo gate finger
- <u>Vantaggio</u>: minore area e perimetro *drain* e *source* e quindi minori capacità parassite

Transistori pmosrf e nmosrf (3)

- Limiti validità modello:
 - -*Frequenza* \leq 6 GHz
 - Larghezza totale gate Wtot = NMOS 200 $\mu m;$ PMOS 150 μm
 - Larghezza gate finger Wf = 5 µm o 10 µm
 - Lunghezza gate L = 0,35 μm (quella minima prevista dalla tecnologia)
 - Gate finger connessi solo su un lato
 - Wtot = ng x Wf; ng = numero gate finger

Transistori pmosrf e nmosrf (4)

- Parametrici tipici:
 - Spessore ossido di campo: 290 nm
 - Spessore ossido di gate: 7,6 nm
 - Tensione di soglia NMOS canale corto: 0,5 V (W=10 μm; L=0,35 μm)
 - *Tensione di soglia PMOS canale corto: -*0,65 V
 (W=10 μm; L=0,35 μm)

Advanced Design System (ADS)

- Appartiene categoria software EDA (Electronic Design Automation) sviluppato da Agilent ora Keysight
- Insieme integrato di tool di ausilio all'intero flusso di progetto (dalla definizione delle specifiche al layout) di un circuiti a RF e microonde
 - Più livelli di simulazione e verifica: system-level (Ptolemy), elettromagnetica (Momentum), circuitale (DC, AC, S-parameters, HB, ecc.)

ADS: struttura

- File organizzati in *project* con uno o più *design*
 - project (folder: <project_name>_prj) contenitore
 - design (file: <design_name>.dsn) effettivo circuito con relativo schematico e layout
- Tre finestre principali:
 - Main window: finestra per gestione progetti e design-kit
 - Schematic/Layout window: finestra di lavoro
 - Data display window: finestra per visualizzazione dati

ADS: main window (1)

• Creare e gestire *project*

project

Set-up design kit (quando si cambia tecnologia)

📅 Advanced Design System (Main)	
File View Tools Windraw DesignKit DesignGuide Help	
File Browser Project Hierarchy	
B Z:\ads\home_projects\lab1_nmosrf_prj	
networks	
DC_AC_characteristics.dsn design	
Z:\ads\home_projects\lab1_nmosrf_prj	- //

• Project root:

...

- file ausiliari e visualizz.
 dati (.dds)
- Project subfolders:
 - *data*: contiene
 risultati simulazioni
 (.ds)
 - *networks*: contiene
 designs (.dsn)

ADS: schematic window (1)

- Descrizione del circuito
- Impostazione analisi simulazione
- Percorso modelli e corner di processo (typical mean, worst speed, worst power, ...)
- Variabili e measurement equation
- Tutto è gestito attraverso *component* (simboli sullo schematico) disponibili all'interno di librerie (*Component Palette*)

ADS: schematic window (2)

📅 [lab1_nmosrf_prj] AC_characteristics * (Schematic):1									
<u>File E</u> dit <u>S</u> elect	<u>V</u> iew <u>I</u> nsert	Options Tools	Layout	Si <u>m</u> ulate	<u>W</u> indow	DynamicLink	De		
	s d	↓ ••¢ (†) Ⴢ	51	÷ Q	\bigcirc	⁻² C		
PRIMLIB		-				• •	4		
		ams - S35	ude			11 =2.0 =2.0 =2.0 	· · · · · · · · · · · · · · · · · · ·		
		PARA Param Sweep Sweep 1 Sweep Vare' Va SimInstanceN SimInstanceN SimInstanceN SimInstanceN SimInstanceN SimInstanceN SimInstanceN Start=1.5 Stop=3 Step=2 The starting point	METER S ame[1]="A0 ame[2]= ame[3]= ame[4]= ame[6]= tame[6]=	AVEEP .		//easEqn //eas1 ¥i=mag(ids.i)/ma;	- dr . sc		

Component Palette List

- Lumped Components
- Sources-
 - Controlled, Freq Domain,
 Time Domain, ...
- SimulationDC, AC, HB, S_Param, ...
- Probe Components
- PRIMLIB, PRIMLIBRF

ADS: schematic window (2)

ADS: data display window (1)

4

) (de			Ids.i
Vas		Vg=0.900	Vgs=1.500	Vgs=2.100
	0.000	-0.01735E-51A	-1.600E-51A	-0.05197E-24A
	0.174	213.9 uA	586.0 uA	787.5 uA
	0.347	261.8 uA	964.7 uA	1.411 mA
	0.521	279.2 uA	1.163 mA	1.872 mA
	0.695	290.7 uA	1.250 mA	2.181 mA
	0.868	299.5 uA	1.298 mA	2.360 mA
	1.042	307.0 uA	1.330 mA	2.458 mA
	1.216	313.7 uA	1.353 mA	2.519 mA
	1.389	319.9 uA	1.372 mA	2.562 mA
	1.563	325.7 uA	1.388 mA	2.595 mA
	1.737	331.3 uA	1.402 mA	2.621 mA
	1.911	336.7 uA	1.415 mA	2.643 mA
	2.084	342.0 uA	1.427 mA	2.663 mA
	2.258	347.3 uA	1.438 mA	2.680 mA
	2.432	352.8 uA	1.449 mA	2.696 mA
	2.605	358.6 uA	1.460 mA	2.711 mA

- Si possono inserire equazioni
- Più modi di visualizzare risultati simulazioni ed equazioni
 - Grafico
 - Tabella

ADS: data display window (2)

- Risultato simulazione array multi-dimensionale
- Ogni dimensione corrisponde a una variabile indipendente della simulazione:
 - variabili parameter sweep e variabile propria simulazione
 (time per analisi TRAN, freq per analisi AC,...)
- Esempio: *DC sweep* (variabile
 Vds) e *parametric sweep* (variabile *Vgs*)
 - Ids.i[3,::] seleziona la terza riga;
 valori *Ids* con *Vgs* uguale al quarto
 valore assunto nello *sweep*

Lab 1: nmos-rf

- Apriamo ADS ...
- Cimentiamoci con le simulazioni proposte nella guida al lab. 1 nmosrf

Riferimenti

• Note introduttive all'uso di Advanced Design Software (ADS), rev. 11-2009.