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NOMENCLATURE

CN matrix condition number
iλ spectral intensity of radiation
f1,2 weighs in a composed phase function
gλ parameter of Henyey-Greenstein phase function
iλ spectral intensity of radiation
ibλ spectral intensity of blackbody radiation
N number of measurement data
Nbd number of bi-directional measurement data
nd number of discretization points of the quadrature
pj jth parameter to be identified
Pλ scattering spectral phase function
Rh hemispherical reflectance
T transmitance or reflectance
Tbd  bi-directional transmittance or reflectance
Th hemispherical transmittance
X(i,j) normalized sensitivity coeff icient

Greek symbols
βλ spectral volumetric extinction coeff icient
κλ spectral volumetric absorption coeff icient
µ cos(θ)
θ polar angle of direction
θ0 incident and scattering directions angle
σλ spectral volumetric scattering coeff icient
τ0 optical thickness
ωλ spectral albedo

Subscripts
b blackbody
e experimental data (measured)
t theoretical data (computed)
λ wavelength

INTRODUCTION.

A number of materials widely used in many industrial
areas such as aerospace, textile, building, food, energy and
environment.., are dispersed and semitransparent media
which emit, absorb, and scatter thermal radiation. Heat
transfer by combined radiation with conduction or convection
in such media is a problem of great practical importance,
mainly in situations where radiation is the dominant mode.
Most of these materials are composed of dispersed phases of
solid/solid type (ceramics, surface pigmented coatings..), or
solid/gas type (thermal insulation materials : fibers, foams,
fluidized and packed beds, catalytic combustors, soot..), or
liquid/gas type (sprays..)..

The prediction of radiative heat transfer in semitransparent
materials requires not only the capabilit y to solve the
Radiative Transfer Equation (RTE) but also the knowledge of
the radiative properties of the concerned media.

Although numerical and analitycal methods are available
to solve the RTE for dispersed media, some diff iculty remains
to determine the radiative properties of such media and there
is a need of appropriate methodologies. This paper will be
focused on the determination of the radiative properties of
dispersed media.

The properties of which knowledge is required are the
refractive index nλ, the absorption coeff icient κλ and the
scattering coeff icient σλ, or alternatively the extinction
coeff icient βλ = κλ + σλ and the albedo ωλ  =  σλ /βλ , and the
phase function Pλ. This means that at least four spectral
properties should be determined and even more as Pλ is
defined from several shape parameters.

The reviews of Viskanta and Mengüç [1], and, more
recently, Bailli s and Sacadura [2] report a number of works
devoted to radiative transfer in dispersed media and radiative
properties of such media over the last 20 years.

EXPERIMENTAL CHARACTERIZATION OF THERMAL RADIATION
PROPERTIES OF DISPERSED MEDIA

J. F. Sacadura, D. Bailli s

Institut National des Sciences Appliquées de Lyon
Centre de Thermique de Lyon (CETHIL), UMR CNRS 5008

F69621 Vill eurbanne Cedex – France

ABSTRACT

As dispersed materials generally are semi-transparent media which absorb, emit and scatter thermal radiation, the predictive
modeling of thermal processes involving such kind of materials requires the knowledge of a number of radiative properties to
feed the models. These properties cannot be directly measured but are identified from a set of experimental data of radiative
flux collected from a sample submitted to appropriate experimental conditions. This paper focuses on identification
methodology for thermal radiation properties of dispersed media such as fibers, foams, pigmented coatings, ceramics.. After a
brief introductive overview of the subject, the parameter identification methodology and two experimental faciliti es used for
radiative properties determination are firstly described. As the identification process involves a solution model for the
Radiative Transfer Equation inside the sample, some attention is then paid to the development of RTE solution models well
matched to this specific purpose.Two examples of application are described before concluding on the advantages, limitations
and remaining diff iculties connected to this new and promising metrology of thermal radiative properties of dispersed media.



Basically there are two famili es of methods allowing the
determination of thermal radiation properties: (i) the
predictive modeling, and (ii ) experimental methods using a
parameter identification technique applied to some
appropriate set of radiative flux measurement data.

i) As reported in Bailli s and Sacadura in [2], a significant
number of works have been realized on theoretical prediction
of radiative properties of f ibrous media or media composed of
spherical particles, starting from the properties of the basic
components such as the optical indices. The modeling method
mostly used is based on the Mie’s theory describing the
interaction of an electromagnetic wave with an individual
particle. But in case of foams or ceramics, few works are
found due to the complexity of these media. Measurement
data of spectral transmittances and reflectances are frequently
used either in order to compare experimental data to
theoretical results, or to identify unknown properties of the
basic components, for instance the hemispherical reflectance
of the solid phase of the foam [3]. The main interest of these
models is that they allow to study the influence of porosity
and of the radiative properties of the basic components of the
media, and they also contribute to improve the understanding
of the phenomenological aspects.

ii ) An alternative way to determine the radiative properties
of a medium consists of identifying them. It allows to study
complex materials of which radiative behavior would not be
easily modelized from theory. Two types of transmittance and
reflectance measurements may be used to provide the data for
the identification process : directional-hemispherical or
directional-directional (bi-directional) measurements. A
number of works have been published dealing with radiative
properties identification based on directional-hemispherical
experimental data, and assuming an isotropical phase
function. Among the more recent ones are the works of
Skocypec et al. [4], and Hale and Bohn [5] on reticulated
ceramics, and Kuhn et al. [6] on polystyrene and polyurethane
foams. Hendricks and Howell [7] also identified the radiative
properties from hemispherical transmittance and reflectance
measurements, but they used non isotropical phase functions.
Four parameters have been so identified by these authors: the
absorption and scattering coeff icients and two coeff icients for
the phase function. In order to get enough information to
carry out the identification procedure, they used samples of
different thicknesses. Nicolau et al [8] used directional-
directional measurements to identify the radiative properties
of f ibrous insulating materials : extinction coeff icient, albedo,
phase function parameters. A new phase function
representation as been proposed by these authors which
combines two Henyey and Greenstein phase functions,
forward and backward peaked, respectively, coupled with an
isotropic phase function. Moura et al. [9] used directional-
hemispherical measurements, but considering different angles
of incidence onto the sample in order to increase the amount
of information. They identified the same parameters for the
same materials as in [8], (the phase function representation
was also the same). These authors have shown through
numerical simulations that bi-directional measurements with a
colli mated beam normally incident onto the sample are more
appropriate than directional-hemispherical transmittance and
reflectance measurements under different angles of incidence
to identify the radiative properties of this kind of media.
Recently Milandry [10] identified the radiative properties of
sili ca wool by using a bi-directional experimental set-up. In
order to obtain a phase function closer to the one given by
Mie’s theory he added a Lorentz function to the Nicolau’s
phase function, which means one more parameter to identify.

However, like in case of Nicolau’s phase function, it appeared
that there are too much parameters to identify, mainly when
some of them are correlated.

Both measurement methods, directional-hemispherical or
directional-directional with normal incidence show
advantages and drawbacks. Directional-hemispherical
measurements are easily and rapidly acquired, but they only
allow the identification of the extinction coeff icient and
albedo for a given sample thickness, the phase function being
assumed known. On the other hand directional-directional
measurements contain much more information allowing the
identification of parameters of the phase function, but for the
directions of incidence other than those situated close to the
normal the measured data are weak and noised. Furthermore
the phase function remains diff icult to identify [8]. For that
reason Bailli s et al. [11] used a combination of directional-
directional and directional-hemispherical transmittance data
acquired under normal incidence to identify the radiative
properties of polyurethane foam.

Other methods are available such as the flash method
recently extended [12, 13] to simultaneously determine
conductive and radiative properties. The main advantage is
that they provide the properties as a function of temperature,
but they do not allow to obtain spectral properties (only gray
ones) and not the phase function. So this lecture will be
focused on identification of spectral radiative properties of
condensed semi-transparent media from spectral radiative
measurements.
In what follows the identification methodology based on the
comparison of theoretical and experimental data will firstly be
recalled. Different experimental configurations
(hemispherical or directional measurements or combination of
both types) will be presented. The key role of the sensitivity
coeff icients and of the condition number of the matrix of
sensitivity coeff icients will be pointed. Then examples of
experimental set-ups will be described, and models allowing
to calculate transmittances and reflectances as well as
different models of representation of the phase function will
be presented. Finally some examples of application of
radiative properties determination of f iber and foam materials
will be given before concluding.

PARAMETER IDENTIFICATION
 

 Principle

 The parameter identification method is based upon the use of
: a) a set of experimental data of spectral radiative fluxes (Tei)
coming in different directions (i) from one or both sides of a
sample irradiated by a source or emitting radiation,
 b) the same number of theoretical fluxes (Tti) calculated for the
same conditions as the experimental data from an initial guessed
set of values of the parameters p1, …pn to be identified (Fig.1).

 For each wavelength the goal is to determine the set of
parameter values p1, …pn which minimizes the functional F,
which represents the sum of quadratic differences between the
theoretical and the experimental data : 
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 N is the number of experimental or theoretical data. For:

 hemispherical measurements : N=2 (only one transmittance and
one reflectance measurements),



 directional measurements : N=Nbd, Nbd being the total number of
directions of bi-directional measurement,
 any combination of directional and hemispherical
measurements : N = 2+Nbd .

 Several methods are available to achieve the minimization.
Uny [14] used the method of Hooke and Jeeves. Nicolau et al.
[8], and Bailli s et al. [3] adopted the method of linearization of
Gauss (see for instance Beck and Arnold [15], which allows to
better follow the convergence of the process by calculating at
each step a set of sensitivity coeff icients. The principle of this
method is briefly recalled.

 
 Gauss linearization method

It involves the solution of the following system of non
linear equations :
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 An iterative method of solution is used (Fig. 1):

 

 pj

k+1 = pj

k + ∆ pj

k

     
(3)

 where ∆ pj

k is the increment to add to each unknown parameter pj

at iteration k. The LHS matrix S of Eq.(2) is composed of
sensitivity coefficients calculated from the theoretical model.
They do not depend on the experimental values
A condition number CN of matrix S is calculated at each step
:
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S is the norm of the matrix, defined from the elements Sij as:
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The condition number provides a detection of possible
linear dependences between sensitivity coeff icients ∂Tti / ∂pj.

The condition number is greater than one. The larger the
condition number is, the worse ill -conditioned the system is :
small changes in the RHS of equation (3), i.e. in the
experimental data, will result in very large change in the
solution vector, i.e. the increments ∆ pj

k . This means that it
will be impossible to simultaneously determine all the
unknown parameters.

Poor conditioning occurs when at least two sensitivity
coeff icients are linearly dependent, or when one is very small
or very large compared to the others. Thus the condition
number is a very powerful tool to previously investigate the
probabilit y of success of the parameter identification
procedure and, accordingly, to adapt the methodology.
 

RTE Solution Model
Transmittance & Reflectance Theoretical Data

Sensitivity coefficients
Condition number

Transmittance and Reflectance Experimental
Data

Initial Values of the Parameters p1, .., pn

Margin values

   Results p1, .., pn

Least Squares Minimization Technique

Calculation of the increments ∆p1
k, .., ∆pn

k

∆p1
k, .., ∆pn

k<Margin ?

p1
k+1= p1

k+ ∆p1
k

…

pn
k+1= pn

k+ ∆pn
k

Yes

No

Fig. 1: Flow chart of the parameter identification procedure



EXPERIMENTAL DESIGN

As examples of experimental design two set-ups used in
the applications that will be presented in the following
sections are now described. In both experiments the sample
is submitted to a normally incident colli mated beam.

Bidirectional transmittance and reflectance measurement

The experimental set-up developped by Nicolau et al [8]
and improved by Doermann [16] and Moura [17] is
schematically represented in Fig. 2. It is composed of two
main parts: an FTIR spectrometer, at the left of the figure,
and, at the right, a bi-directional transmittance or reflectance
(BTDF/BRDF) device. Through an exit port of the
spectrometer a modulated and nearly colli mated beam is sent
to the BTDF/BRDF goniometric system. The FTIR used
(Biorad, FTS 60A), with a ceramic source heated up to
1300°C and a KBr beamsplitter, allows measurements over
the wavelength range [2 - 15 µm]. The radiation detector,
located on the rotating arm of the BRDF/BTDF device, is a
liquid nitrogen cooled linearized HgCdTe (MCT) detector.
The BTDF/BRDF system is composed of two concentric
turn tables driven by stepping motors : the sample is placed

on the upper one, with the face exposed to the incident beam
located right at the center of the table, at a distance of 500
milli meters from the FTIR exit mirror. The arm on which are
placed a collecting mirror (150 mm of focal distance) and
the detector is attached to the lower turntable.

The FTIR as well as the BTDF/BRDF system which is
located inside a tight Plexiglass box, and a beam duct
connecting both devices, are feeded by the same treated air,
purged from H2O vapour and CO2. In this manner the
radiation beam, from source to detector, is entirely
maintained in a treated atmosphere which allows to avoid
the atmospheric absorption over the beam length. The
alignment of this device requires a great care and is highly
time consuming. Detailed description of the procedure may
be found in [16].

Directional-hemispherical transmittance and reflectance
measurement
For directional-hemispherical measurements another FTIR
spectrometer has been used (Brucker IFS 66V). The
beamsplitter is also a KBr. An external integrating sphere
collects hemispherically the radiation crossing or reflected
by the sample onto a detector placed on the wall of the
sphere. This device (Fig. 3) is a 76 mm  ID golden coated
Labsphere
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 Fig. 2: BTDF/BRDF experimental set-up [16].
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 Fig. 3: Integrating sphere attachment of  Bruker FTIR IFS 66v Spectrometer
a) Directional-hemispherical transmittance  b) Directional-hemispherical reflectance.



unit, with a liquid nitrogen cooled MCT detector. The
radiation source of the FTIR is a SiC globar. The wavelength
range allowed for measurements is [1.4 µm – 18µm]. The
diameter of the sample area submitted to a normally incident
beam is of 13 mm.

RTE SOLUTION MODEL

In order to calculate the theoretical data used in the
radiative parameter identification process, a very eff icient
solution method in terms of accuracy/computing time ratio is
required for the Radiative Transfer Equation. The RTE,
which describes the variation of the spectral radiation
intensity iλ (in a given direction Ω

�
, as a function of optical

depth τ) in an absorbing-emitting-scattering medium, can be
written as:
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This equation involves the spectral radiative properties of
the medium : extinction coeff icient βλ , albedo ωλ , phase
function pλ . ibλ is the Planck’s blackbody intensity and dΩ is
an elemental solid angle surrounding the direction Ω

�
. These

properties are those of a pseudo-continuous medium
equivalent in terms of radiative transport, to the real
dispersed material. When transmittance and/or reflectance
measurements are used, due to the modulation of the
measured radiation by the FTIR system, the emission term in
the RTE is not accounted for.

Among different methods available to solve numerically
the RTE, the Discrete Ordinates Method (DOM) is
commonly considered as the most eff icient for radiative
parameter identification purposes. In this method the integral
term of the RTE is calculated from an angular quadrature
over a set directions of discretization. [18]. Thus the
integral-differential equation is transformed into a PDE
system that may be solved numerically, by finite differences
for instance or analytically when possible.

Representation of the phase function

The representation of the phase function, which plays an
important role in the RTE solution, should be carefully
selected. For media of which particles may be considered as
randomly oriented in space, phase function only depends on
the scattering angle, that is the angle θ0  between any couple
of incident and scattered radiation directions. A common
approach to represent the phase function consists of
developing this function in a limited series of Legendre
polynomials. Unfortunately the phase functions of a number
of particulate media, particularly fibers and foams, exhibit a
strong peak in the incident direction (forward scattering) and
a fair back-scattering, which requires a very large number of
expansion coeff icients in a Legendre polynomials
expansion. This is of course not suitable for identification.
An alternative solution is to use simpler representations of
phase function, like Henyey and Greenstein’s one (HG),
which only needs one shape parameter, gλ:
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or a combination of different phase functions (Nicolau et al.,
[8] ; Hendricks and Howell , [7]). As an example, the phase
function of Nicolau et al., well suited for fibrous media, may
be written as :

( ) ( ) ( ) ( )[ ] ( )202101120 f1Pf1PffP −+−+= θθθ HG,gHG,g   (8)

where the parameters g1 and g2 govern the shape of the HG
functions PHG,g1 and PHG,g2 in forward and backward directions,
f1 is a weigh factor between forward and backward
anisotropy of the phase function and f2 is the weigh factor
between anisotropic and isotropic scattering (Fig. 4).

Thus if it is not mandatory to identify the refractive
index nλ of the medium, and by using for instance the
Nicolau’s phase function, the maximum number of radiative
parameters to be identified for a dispersed medium is of 6 .
They are: the absorption and scattering coeff icients κλ and
σλ (or the extinction coeff icient βλ = κλ  + σλ  and the albedo
ωλ = σλ  / βλ ), and g1, g2, f1, f2.

Isotropic scattering

Backward scattering (g2) Forward scattering (g1)

θ0

Fig. 4 : Composed HG phase function.



Non-azimuthal symmetry of the radiative field

Most of available solution methods of the RTE assume
azimuthal symmetry of the radiative intensity field. This
limits the modeling of the experiments to configurations in
which the radiation incident onto the sample is symmetric
around the normal to the surface. Moura [17] has recently
developed a non-azimuthal symmetric angular quadrature
suitable for non-normally incident radiation onto the sample,
which increases the number of possible experimental
configurations for parameter identification.

EXAMPLES OF APPLICATION

Examples of radiative parameter identification concerning
two different dispersed media (fibers and foam) are now
presented. They will show the importance of the
conditioning number and of the sensitivity coefficients. Both
materials were investigated in non emissive situation (cold
medium), by using the experimental facilities described
above which only work  with samples at room temperature.

Bi-directional measurement data

By using the set-up described in Fig. 2, the identification
procedure has been applied to a fibrous medium (low density

commercial insulating glass wool). The properties to be
determined are the following : pj=1,..6 = ω, g1, f1, f2, g2, τ0, (in
this sequence). The values of the condition number CN show
(Fig. 5) that it is difficult to simultaneously identify all 6
parameters. A sample optical thickness of 12 appears as
optimal. However as the absorption coefficient is not yet
known, it is difficult to select the corresponding geometric
thickness for the sample. The CN depends on the number of
parameters and on the choice of parameters to identify : in
Fig. 5 when only two parameters are identified, these are ω
and g1; when three parameters are identified they correspond
to the sequence ω, g1 and f1, and so on.. Moreover the
analysis of the normalized sensitivity coefficients shows that
for τ0 = 2 the sensitivity of τ0 remains weak compared to the
other parameters. Thus it will be difficult to identify τ0 for
this value of the optical thickness. Conversely, for τ0 = 20 it
is the sensitivity of g2 which appears to be very low (Fig. 6 a
and b). This preliminary investigation of the identification
configuration shows that for this material and with this
experimental configuration it will be difficult to
simultaneously identify 6 parameters. A possible way
successfully used by Nicolau is to reduce the number of
parameters of the phase function, by assuming for instance
g2=-g1.

parameters
parameters
parameters
parameters
parameters

Optical thickness

CN

Fig. 5: Condition number as a function of optical thickness.

X(pj)
X(pj)

Fig 6: Normalized sensitivity coefficients. ω=0.95, g1=0.95, f1=0.90, f2=0.95, g2=-0.6.a) τ0=2, b) τ0=20.
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Combination of directional-hemispherical and bi-
directional measurement data

When bi-directional measurements are carried out on
materials like foams which are mostly optically dense, the
recorded signals are very low and noised in backward
directions as well as in directions far from the incidence one.
But on the other hand if these data are not accounted for the
identification, there is not enough information to identify the
radiative properties, specially the phase function. Thus
Bailli s and Sacadura [11] identified radiative properties of
polyurethane foam by using a combination of directional-
hemispherical and bi-directional measurement data. In order
to alleviate the number of parameters to identify they
adopted a single HG function of phase representation. The
faciliti es used are those described in Fig. 2 and 3. For each
wavelength value a set of 8 experimental data was entered in
the identification process : 6 bi-directional transmittance
measurements acquired in directions near to the incidence
one, where the signal is suff iciently strong, plus 1
hemispherical transmittance and 1 hemispherical reflectance.
The standard deviations of the radiative properties values
identified from three different thicknesses of sample (310µm,
427µm, and 528µm) remain low (Fig. 7 a and b) which
shows a good behavior of the model used. The investigation
of the sensitivity coeff icients (normalised coeff icients X)
showed (Fig. 8 a to d) that the parameters seem not to be
correlated. β is not sensitive for hemispherical reflectance.
Conversely, β is the most sensitive parameter for the normal
transmittance (direction 1, Fig.8a). In case of hemispherical
transmittance and reflectance the sensitivity of ω appears to
be the most important one. For bi-directional transmittance in
direction 2, situated very close to the incident direction, the
most sensitive parameter is g (Fig. 8b). Thus the combination
of  directional-hemispherical and bi-directional experimental
data provides complementary information making possible
the identification of the radiative parameters.

DETERMINATION OF THE REFRACTION INDEX

The refractive index is involved in the source term
(Planck’s function) of the RTE as well as in the radiative
boundary conditions. For high porosity media, as a number
of fiber or foam materials are, the refractive index of the
pseudo-homogeneous medium equivalent, for  radiative
transport effects, to the real dispersed material, is nearly
equal to the index of the fluid filli ng phase (generally gas,
and mostly air, for fibers or foams), which may be known
from literature.

The usual methods to determine the refraction index nλ
are based upon the use of reflexion spectra and Kramers-
Kronig relations, or the use of elli psometric techniques. A
serious problem occurs in case of dispersed materials, made
of particles: it is not possible to perform measurements on
individual particles as they are in a dispersed medium. In
fact the reflexion data are acquired on samples of slab-shape,
made of agglomerated particles, obviously not exactly the
same material as in the dispersed phase. Once the index of
refraction of each dispersed phase and/or the matrix is
supposed to be known, an equivalent refractive index of a
pseudo-homogeneous medium equivalent for radiative
transport to the real dispersed medium, may be calculated
from averaging theories like : Maxwell -Garnett (spherical

particles in a dielectric matrix), Maxwell -Garnett modified
by Cohen et al. (accounting for non-spherical shape of
particles), Bruggeman, Wood & Ashcroft Effective Medium
Theory (both shapes are particles, spherical and elli psoïdal)
[19;20]. But in fact the accurate determination of the
refractive index of dispersed media should be considered
today as an unsolved problem, open to research.

CONCLUSION

As shown in this paper experimental parameter
identification based on a new and smart metrology matched
to each material to be investigated, is a promising way to
determine thermophysical radiative properties of complex
media. Each medium may be a specific case and requires a
preliminary metrological analysis, accordingly to the type of
material and the expected accuracy, mainly on the knowledge
of the phase function.

The accuracy required on the phase function plays an
important role in the selection of the identification strategy :
if an isotropic phase function is assumed, the identification is
simpler, two hemispherical measurements (transmittance and
reflectance), that may be rapidly acquired, are suff icient.
Also the selection of the phase function is not independent
from the choice of the radiative transfer model using the
identified properties : for instance if a highly forward peaked
Henyey and Greenstein phase function identified from bi-
directional measurements is then used in a rather simpli fied
RTE solution model li ke the two-flux model (much less
accurate than the Discrete Ordinates Method), it is obvious
that significant errors may occur. In this case the use of
hemispherical measurements and of an isotropic
representation for the phase function would be preferable and
certainly easier to carry out.

The type of medium to be studied is also important. If it
does not allow to measure enough radiative energy in
directions far from the normal to the surface of the sample,
the acquired information will not be suff icient to identify the
radiative properties including the phase function, from bi-
directional measurements. In this case a combination of bi-
directional and hemispherical measurements would be better
suited.

The sensitivity coeff icients and the condition number are
very helpful tools which allow to previously estimate the
probabilit y of success of an experiment designed for
parameter identification and to match it accordingly. For
each application it is also strongly recommended to use
different thicknesses of sample in the identification process
in order to check that the final results obtained are
independent from the material thickness.

The aim of this paper was to present some tracks open by
a new experimental methodology in the diff icult area of
assessment of thermal radiation properties of dispersed
media. Most of current know-how is limited to room
temperature property determination. Some properties, as the
index of refraction of particulate media, still remain hardly
accessible to metrology. These are only two, among other
aspects, which are urging challenges for radiative property
metrology.
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