EXERCISE 1

Construct a B+-tree for the following set of values

$$
(2,3,5,7,11,17,19,23,29,31)
$$

Assume that the tree is initially empty and values are inserted in ascending order.

1) Construct B+-trees for the cases where the number m of pointers that will fit a node is as follows:
a. Four
b. Seven
2) Shows the form of the B+-tree after each operation of the sequence:

Insert 9; Insert 10; Insert 8; Insert 6; Insert 1; Insert 4
for the case $m=4$.
Solution
Point 1)

File

B+-tree:
Not a root or a leaf node: $\lceil m / 2\rceil<=\mathrm{p}<=m$, where p is a pointer.
Leaf node: $\lceil(m-1) / 2\rceil<=\mathrm{k}<=m-1$, where k is a key.
Root: $\mathrm{p}>=2$ if it is not a leaf
$0<=\mathrm{k}<=(m-1)$ if it is a leaf.
a) $m=4 \quad$ Internal node: $2<=p<=4$

Leaf node: $2<=\mathrm{k}<=3$

Root: $\mathrm{p}>=2$ if it is not a leaf;
$0<=k<=3$ if it is a leaf

B+tree: Insert 2, 3, 5

$$
\begin{array}{l|l|l}
\hline 2|3| 5
\end{array}
$$

B+tree: Insert 7 (leaf split)

Split a leaf node:
Let $\mathrm{K}_{1}, \ldots, \mathrm{~K}_{\mathrm{m}}$ be the set of keys in the ascending order (i.e. 2, 3, 5, 7)

- Node $\mathrm{N}: \mathrm{K}_{1}, \ldots, \mathrm{~K}_{\lceil\mathrm{m} / 2\rceil-1}, \mathrm{~K}_{\lceil\mathrm{m} / 2\rceil}$ (i.e. 2, 3)
- Node N ': $\mathrm{K}_{\lceil\mathrm{m} / 27+1}, \ldots, \mathrm{K}_{\mathrm{m}}$ (i.e. 5,7)
- Insert $\mathrm{K}_{\lceil\mathrm{m} / 2\rceil_{+1}}$ into the parent node (i.e. 5)

B+tree: Insert 11, 17, 19, 23, 29

B+tree: Insert 31 (leaf node split + non leaf node split)

Split an internal node N :
Let K_{1}, \ldots, K_{m} be the set of keys in the ascending order (i.e. $5,11,19,29$)

- Node $\mathrm{N}: \mathrm{K}_{1}, \ldots, \mathrm{~K}_{\lceil\mathrm{m} / 27-1}$ (i.e. 5)
- Node N ': $\mathrm{K}_{\lceil\mathrm{m} / 27+1}, \ldots, \mathrm{K}_{\mathrm{m}}$ (i.e. 19, 29)
- Insert $\left.\mathrm{K}_{\lceil\mathrm{m} / 2}\right\rceil$ into the parent node of N (i.e. 11)

Note that since values are inserted in ascending order, leaves have the minimum number of keys except the last leaf.
b) Seven.
$m=7$ Intermediate node : $4<=\mathrm{p}<=7 \quad$ Leaf node: $3<=\mathrm{k}<=6$
Root: $\mathrm{p}>=2$ if it is not a leaf; $0<=k<=6$ if it is a leaf

B+tree: Insert 2, 3, 5, 7, 11, 17

$$
2|3| 5|7| 11 \mid 17
$$

B+tree: Insert 19 (leaf split)

B+tree: Insert 23, 29, 31

Point 2) B+-tree

B+tree: Insert 9

B+tree: Insert 10 (leaf split)

B+tree: Insert 8

B+tree: Insert 6 (leaf split)

B+tree: Insert 4 (leaf node split + non leaf node split)

EXERCISE 2 (leaf merge, non leaf merge, leaf keys redistribution)

For the following B+-tree $(\mathrm{m}=5)$ show the form of the tree after each of the of operations of the sequence:
Delete 17; Delete 20; Delete 34
What is the cost in terms of block transfers for each operation?

Solution

Intermediate node : $3<=\mathrm{p}<=5$
Root: $\mathrm{p}>=2$ if it is not a leaf ; $0<=k<=4$ if it is a leaf

Delete k:

Find the leaf node that contains k;
Delete k from the node;
If the node has too few entries

1) merge nodes (if possible)
2) otherwise redistribute keys

B+tree: Delete 17

Cost $=3$ read +1 write $=4$

Leaf merge:

Let N ' be the predecessor; let N be the successor
Let k^{\prime} be the value between the two nodes N ' and N in the parent
Append all keys to N'
Delete (k , pointer to N) from the parent
Delete N

Non leaf merge:

Node Q too few pointers
Let Q' predecessor and Q successor
Let K^{\prime} be the value between the two nodes in parent of Q
Append K^{\prime} and all pointers and values of Q to Q^{\prime}
Delete (K^{\prime}, pointer) from the parent
Delete Q

Root has only one child. Root can be deleted.

Cost: 5 read +2 write $=7$
Delete 34: keys redistribution (leaf)

The node N has too few values
Let N' be the previous or next child of parent of N
Let K^{\prime} the value between N and N^{\prime} in the parent
Entries of N and N^{\prime} cannot fit in a single node.
We apply redistribution of keys
N borrows an entry from N^{\prime} (assume N^{\prime} predecessor of N)
Let j such that $(\mathrm{Pj}, \mathrm{Kj})$ is the last (pointer, value) in N^{\prime}
Remove (Pj, Kj) from N '
Insert (Pj, Kj) as first value in N
Replace K' by Kj in the parent

Cost $=3$ read +3 write $=6$

EXERCISE 3 (non leaf keys redistribuiton)

Show the form of the $B+$-tree $(\mathrm{m}=5)$ after the operation Delete 20 What is the cost of the operation?

Solution
$\mathrm{m}=5 \quad$ Intermediate node : $3<=\mathrm{p}<=5 \quad$ Leaf node: $2<=\mathrm{k}<=4$
Root: $\mathrm{p}>=2$ if it is not a leaf ; $0<=k<=4$ if it is a leaf

Delete 20

The node N has too few values
Merge between N and N '

The node Q has too few pointers
No merge with previous or net child of parent of Q
Redistribution of keys
Q borrows an entry from Q'
Let j be such that $(\mathrm{Kj}-1, \mathrm{pj})$ is the last value pointer in Q^{\prime}
Let K^{\prime} the value between Q and Q^{\prime} in parent of Q
Insert ($\mathrm{pj}, \mathrm{K}^{\prime}$) as first value of Q
Remove (Kj-1, pj) from Q'
Replace K' with $\mathrm{Kj}-1$ in parent of Q

Cost= 5 read +4 write $=9$

