
Intrusion-Tolerant Architectures:
Concepts and Design*

Paulo Esteves Verissimo, Nuno Ferreira Neves, and Miguel Pupo Correia

Univ. of Lisboa, Faculty of Sciences
Bloco C5, Campo Grande, 1749-016 Lisboa - Portugal

{pjV,nvmo,mpc}@di.fc.ul.pt
h t tp : / /www.nav iga to r s .d i . f c .u l .p t

A b s t r a c t . There is a significant body of research on distributed com
puting architectures, methodologies and algorithms, both in the fields of
fault tolerance and security. Whilst they have taken separate paths un
til recently, the problems to be solved are of similar nature. In classical
dependability, fault tolerance has been the workhorse of many solutions.
Classical security-related work has on the other hand privileged, with
few exceptions, intrusion prevention. Intrusion tolerance (IT) is a new
approach that has slowly emerged during the past decade, and gained
impressive momentum recently. Instead of trying to prevent every single
intrusion, these are allowed, but tolerated: the system triggers mecha
nisms that prevent the intrusion from generating a system security fail
ure. The paper describes the fundamental concepts behind IT, tracing
their connection with classical fault tolerance and security. We discuss
the main strategies and mechanisms for architecting IT systems, and
report on recent advances on distributed IT system architectures.

1 Introduction

There is a significant body of research on distributed computing architectures,
methodologies and algorithms, both in the fields of dependability and fault toler
ance, and in security and information assurance. These are commonly used in a
wide spectrum of situations: information infrastructures; commercial web-based
sites; embedded systems. Their operation has always been a concern, namely
presently, due to the use of COTS, compressed design cycles, openness. Whilst
they have taken separate pa ths until recently, the problems to be solved are
of similar nature: keeping systems working correctly, despite the occurrence of
mishaps, which we could commonly call faults (accidental or malicious); ensure
that , when systems do fail (again, on account of accidental or malicious faults),
they do so in a non harmful/catastrophic way. In classical dependability, and
mainly in distributed settings, fault tolerance has been the workhorse of the

* Navigators Home Page: h t tp : / /www.nav iga to r s .d i . f c .u l .p t . Work partially
supported by the EC, through project IST-1999-11583 (MAPTIA), and FCT,
through the Large-Scale Informatic Systems Laboratory (LaSIGE), and projects
POSI/1999/CHS/33996 (DEFEATS) and POSI/CHS/39815/2001 (COPE).

R. de Lemos et al. (Eds.): Architecting Dependable Systems, LNCS 2677, pp . 3-36, 2003.
© Springer-Verlag Berlin Heidelberg 2003

4 Paulo Esteves Verissimo et al.

many solutions published over the years. Classical security-related work has on
the other hand privileged, with few exceptions, intrusion prevention, or intrusion
detection without systematic forms of processing the intrusion symptoms.

A new approach has slowly emerged during the past decade, and gained
impressive momentum recently: intrusion tolerance (IT) .̂ That is, the notion of
handling— react, counteract, recover, mask— a wide set of faults encompassing
intentional and malicious faults (we may collectively call them intrusions), which
may lead to failure of the system security properties if nothing is done to counter
their effect on the system state. In short, instead of trying to prevent every single
intrusion, these are allowed, but tolerated: the system has the means to trigger
mechanisms that prevent the intrusion from generating a system failure.

It is known that distribution and fault tolerance go hand in hand: one dis
tributes to achieve resilience to common mode faults, and/or one embeds fault
tolerance in a distributed system to resist the higher fault probabilities com
ing from distribution. Contrary to some vanishing misconceptions, security and
distribution also go hand in hand: one splits and separates information and
processing geographically, making life harder to an attacker. This suggests that
(distributed) malicious fault tolerance, a.k.a. (distributed) intrusion tolerance is
an obvious approach to achieve secure processing. If this is so obvious, why has
it not happened earlier?

In fact, the term "intrusion tolerance" has been used for the first time in [19],
and a sequel of that work lead to a specific system developed in the DELTA-
4 project [16]. In the following years, a number of isolated works, mainly on
protocols, took place that can be put under the IT umbrella [10,31,22,2,24,4,
21], but only recently did the area develop explosively, with two main projects
on both sides of the Atlantic, the OASIS and the MAFTIA projects, doing
structured work on concepts, mechanisms and architectures. One main reason is
concerned with the fact that distributed systems present fundamental problems
in the presence of malicious faults. On the other hand, classical fault tolerance
follows a framework that is not completely fit to the universe of intentional
and/or malicious faults. These issues will be discussed below.

The purpose of this paper is to make an attempt to systematise these new
concepts and design principles. The paper describes the fundamental concepts
behind intrusion tolerance (IT), tracing their connection with classical fault tol
erance and security, and identifying the main delicate issues emerging in the
evolution towards IT. We discuss the main strategies and mechanisms for ar-
chitecting IT systems, and report on recent advances on distributed IT system
architectures. For the sake of clarifying our position, we assume an 'architecture'
to be materialised by a given composition of components. Components have given
functional and non-functional properties, and an interface where these properties
manifest themselves. Components are placed in a given topology of the archi
tecture, and interact through algorithms (in a generic sense), such that global
system properties emerge from these interactions.

' Example pointers to relevant IT research: MAFTIA: http://www.maftia.org.
OASIS: http://www.tolerantsystems.org.

Intrusion-Tolerant Architectures: Concepts and Design 5

2 The Case for Intrusion Tolerance

Dependability has been defined as that property of a computer system such that
reliance can justifiably be placed on the service it delivers. The service delivered
by a system is its behaviour as it is perceptible by its user(s); a user is another
system (human or physical) which interacts with the former [5j.

Dependability is a body of research that hosts a set of paradigms, amongst
which fault tolerance, and it grew under the mental framework of accidental
faults, with few exceptions [19,17], but we will show that the essential concepts
can be applied to mahcious faults in a coherent manner.

2.1 A Brief Look at Classical Fault Tolerance and Security

Malicious failures make the problem of reliability of a distributed system harder:
failures can no longer be considered independent, as with accidental faults, since
human attackers are likely to produce "common-mode" symptoms; components
may perform collusion through distributed protocols; failures themselves become
more severe, since the occurrence of inconsistent outputs, at wrong times, with
forged identity or content, can no longer be considered of "low probability";
furthermore, they may occur at specially inconvenient instants or places of the
system, driven by an intelligent adversary's mind.

The first question that comes to mind when addressing fault tolerance (FT)
under a malicious perspective, is thus: How do you model the mind of an at
tacker?

Traditionally, security has evolved as a combination of: preventing certain
attacks from occurring; removing vulnerabilities from initially fragile software;
preventing attacks from leading to intrusions. For example, in order to preserve
confidentiality, it would be unthinkable to let an intruder read any confidential
data at all. Likewise, integrity would assume not letting an intruder modify
data at all. That is, with few exceptions, security has long been based on the
prevention paradigm. However, let us tentatively imagine the tolerance paradigm
in security [1]:

• assuming (and accepting) that systems remain to a certain extent vulnerable;

• assuming (and accepting) that attacks on components/sub-systems can hap
pen and some will be successful;

• ensuring that the overall system nevertheless remains secure and operational.

Then, another question can be put: How do we let data be read or modified
by an intruder, and still ensure confidentiality or integrity?

2.2 Dependability as a Common Framework

Let us observe the well-known fault-error-failure sequence in Figure 1. Depend
ability aims at preventing the failure of the system. This failure has a remote
cause, which is a fault (e.g. a bug in a program, a configuration error) which,
if activated (e.g. the program execution passes through the faulty line of code).

6 Paulo Esteves Verissimo et al.

leads to an error in system state. If nothing is done, failure will manifest itself
in system behaviour.

o
interaction '^•^^^

fault ' ^ j ^ ; v '

Q
" design/

• opar/config.
fault

(a)

0
fault

aper/conflg. prevention
fa"ff_ (jmperfQCtJ /^ _ V .

>

fault
tolerance

Btrf» fault
processing treatment

(b)

Fig. ;. 1. Fault-> Error-> Failure sequence

In consequence, achieving dependability implies the use of combinations of:
fault prevention, or how to prevent the occurrence or introduction of faults; fault
removal, or how to reduce the presence (number, severity) of faults; fault fore
casting, or how to estimate the presence, creation and consequences of faults;
and last but not least, fault tolerance, or how to ensure continued correct ser
vice provision despite faults. Thus, achieving dependabihty vis-a-vis malicious
faults (e.g. at tacks and vulnerabilities) will mean the combined use of classical
prevention and removal techniques with tolerance techniques.

This roadmap seems convincing, but in concrete terms, how can tolerance be
applied in the context of attacks, vulnerabilities, intrusions?

2.3 O p e n P r o b l e m s

Let us analyse a few open problems tha t arise when intrusion tolerance is anal
ysed from a security or fault tolerance background.

To star t with, what contributes to the risk of intrusion? Risk is a combined
measure of the probability of there being intrusions, and of their severity, t ha t
is, of the impact of a failure caused by them. The former is influenced by two
factors tha t act in combination: the level of threat to which a computing or
communication system is exposed; and the degree of vulnerabiUty it possesses.
The correct measure of how potentially insecure a system can be (in other words,
of how hard it will be to make it secure) depends: on the number and nature
of the flaws of the system (vulnerabilities); on the potential for there existing
at tacks on the system (threats) . Informally, the probability of an intrusion is
given by the probability of there being an at tack activating a vulnerability tha t
is sensitive to it. The latter, the impact of failure, is measured by the cost of
an intrusion in the system operation, which can be equated in several forms
(economical, political, etc.).

Intrusion-Tolerant Architectures: Concepts and Design 7

Should we t ry and bring the risk to zero? And is t ha t feasible at all? This is
classical prevention/removal: of the number, power, and severity of the vulner
abilities and the at tacks the system may be subjected to. The problem is tha t
neither can be made arbitrarily low, for several reasons: it is too costly and /o r
too complex (e.g., too many lines of code, hardware constraints); certain at tacks
come from the kind of service being deployed (e.g., public anonymous servers
on the Internet); certain vulnerabilities are at tached to the design of the system
proper (e.g., mechanisms leading to races in certain operat ing systems).

And even if we could bring the risk to zero, would it be worthwhile? It should
be possible to talk about acceptable risk: a measure of the probability of failure
we are prepared to accept, given the value of the service or da ta we are trying to
protect. This will educate our reasoning when we architect intrusion tolerance,
for it establishes criteria for prevention/removal of faults and for the effort t ha t
should be put in tolerating the residual faults in the system. Further guidance can
be taken for our system assumptions if we think tha t the hacker or intruder also
incurs in a cost of intruding. This cost can be measured in te rms of t ime, power,
money, or combinations thereof, and clearly contributes to equating 'acceptable
risk', by establishing the relation between 'cost of intruding' and 'value of assets ' .

How tamper-proof is ' t amper-proof ? Classically, ' t amper-proof means t ha t
a component is shielded, i.e. it cannot be penetrated. Nevertheless, in order
to handle the difficulty of finding out tha t some components were "imperfectly"
tamper-proof, experts in the area introduced an alternative designation, ' tamper-
resistant', to express tha t fact. However, the imprecision of the lat ter is uncom
fortable, leading to what we call the "watch-maker syndrome":

• "Is this watch water-proof?"

• "No, it's water-resistant."

• "Anyway, I assume that I can swim with it!"

• "Well yes, you can! But... I wouldn't trust that very much..."

A definition is required tha t attaches a quantifiable notion of "imperfect" to
tamper-proofness, without necessarily introducing another vague term.

How can something be t rusted and not t rustworthy? Classically, in security
one aims at building t rust between components, but the merits of the object of
our t rust are not always analysed. This leads to what we called the "unjustified
reliance syndrome":

• "I trust Alice!"

• "Well Bob, you shouldn't, she's not trustworthy."

What is the problem? Bob built t rus t on Alice through some means tha t may
be correct at a high level (for example, Alice produced some signed credentials).
However, Bob is being alerted to a fact he forgot (e.g., t ha t Alice is capable of
forging the credentials). It is necessary to establish the difference between what
is required of a component, and what the component can give.

How do we model the mind of a hacker? Since the hacker is the perpet ra tor
of at tacks on systems, a fault model would be a description of what he /she can

8 Paulo Esteves Ven'ssimo et al.

do. Then, a classical attempt at doing it would lead to the "well-behaved hacker
syndrome":

• "Hello, I'll be your hacker today, and here is the list of what I promise not to do."

• "Thank you, here are a few additional attacks we would also like you not to at
tempt. "

In consequence, a malicious-fault modelling methodology is required that
refines the kinds of faults that may occur, and one that does not make naive
assumptions about how the hacker can act. The crucial questions put in this
section will be addressed in the rest of the paper.

3 Intrusion Tolerance Concepts

What is Intrusion Tolerance? As said earlier, the tolerance paradigm in secu
rity: assumes that systems remain to a certain extent vulnerable; assumes that
attacks on components or sub-systems can happen and some will be success
ful; ensures that the overall system nevertheless remains secure and operational,
with a quantifiable probability. In other words:

• faults— mahcious and other— occur;

• they generate errors, i.e. component-level security compromises;

• error processing mechanisms make sure that security failure is prevented.

Obviously, a complete approach combines tolerance with prevention, removal,
forecasting, after all, the classic dependability fields of action!

3.1 AVI Composite Fault Model

The mechanisms of failure of a system or component, security-wise, have to do
with a wealth of causes, which range from internal faults (e.g. vulnerabilities),
to external, interaction faults (e.g., attacks), whose combination produces faults
that can directly lead to component failure (e.g., intrusion). An intrusion has
two underlying causes:

Vulnerability - fault in a computing or communication system that can be
exploited with malicious intention

Attack - malicious intentional fault attempted at a computing or communica
tion system, with the intent of exploiting a vulnerability in that system

Which then lead to:

Intrusion - a malicious operational fault resulting from a successful attack on
a vulnerability

It is important to distinguish between the several kinds of faults susceptible of
contributing to a security failure. Figure 2a represents the fundamental sequence
of these three kinds of faults: attack -^ vulnerability -^ intrusion —+ failure. This
well-defined relationship between attack/vulnerability/intrusion is what we call

Intrusion-Tolerant Architectures: Concepts and Design 9

the AVI composite fault model. The AVI sequence can occur recursively in a
coherent chain of events generated by the intruder(s), also called an intrusion
campaign. For example, a given vulnerability may have been introduced in the
course of an intrusion resulting from a previous successful attack.

Vulnerabilities are the primordial faults existing inside the components, es
sentially requirements, specification, design or configuration faults (e.g., coding
faults allowing program stack overflow, files with root setuid in UNIX, naive
passwords, unprotected TCP/IP ports). These are normally accidental, but may
be due to intentional actions, as pointed out in the last paragraph. Attacks are
interaction faults that maliciously attempt to activate one or more of those vul
nerabilities (e.g., port scans, email viruses, malicious Java applets or ActiveX
controls).

The event of a successful attack activating a vulnerability is called an intru
sion. This further step towards failure is normally characterised by an erroneous
state in the system which may take several forms (e.g., an unauthorised priv
ileged account with telnet access, a system file with undue access permissions
to the hacker). Intrusion tolerance means that these errors can for example be
unveiled by intrusion detection, and they can be recovered or masked. However,
if nothing is done to process the errors resulting from the intrusion, failure of
some or several security properties will probably occur.

©-
intrusion

Sfault)

*
vulnwability

(fault)

-T"^

(a) (b)

Fig. 2. (a) AVI composite fault model; (b) Preventing security failure

Why a composite model? The AVI model is a specialisation of the generic
fault -^ error —> failure sequence, which has several virtues. Firstly, it describes
the mechanism of intrusion precisely: without matching attacks, a given vul
nerability is harmless; without target vulnerabilities, an attacks is irrelevant.
Secondly, it provides constructive guidance to build in dependability against
malicious faults, through the combined introduction of several techniques. To
begin with, we can prevent some attacks from occurring, reducing the level of
threat, as shown in Figure 2b. Attack prevention can be performed, for example,
by shadowing the password file in UNIX, making it unavailable to unauthorised
readers, or filtering access to parts of the system (e.g., if a component is be
hind a firewall and cannot be accessed from the Internet, attack from there is

10 Paulo Esteves Ven'ssimo et al.

prevented). We can also perform attack removal, which consists of taking mea
sures to discontinue ongoing attacks. However, it is impossible to prevent all
attacks, so reducing the level of threat should be combined with reducing the
degree of vulnerability, through vulnerability prevention, for example by using
best-practices in the design and configuration of systems, or through vulnera
bility removal (i.e., debugging, patching, disabling modules, etc.) for example
it is not possible to prevent the attack(s) that activate(s) a given vulnerability.
The whole of the above-mentioned techniques prefigures what we call intrusion
prevention, i.e. the attempt to avoid the occurrence of intrusion faults.

Figure 2b suggests, as we discussed earlier, that it is impossible or infeasible to
guarantee perfect prevention. The reasons are obvious: it may be not possible to
handle all attacks, possibly because not all are known or new ones may appear; it
may not be possible to remove or prevent the introduction of new vulnerabilities.
For these intrusions still escaping the prevention process, forms of intrusion
tolerance are required, as shown in the figure, in order to prevent system failure.
As will be explained later, these can assume several forms: detection (e.g., of
intruded account activity, of Trojan horse activity); recovery (e.g., interception
and neutralisation of intruder activity); or masking (e.g., voting between several
components, including a minority of intruded ones).

3.2 Trust and Trustworthiness

The adjectives "trusted" and "trustworthy" are central to many arguments about
the dependability of a system. They have been often used inconsistently and up
to now, exclusively in a security context [1]. However, the notions of "trust" and
"trustworthiness" can be generalised to point to generic properties and not just
security; and there is a well-defined relationship between them— in that sense,
they relate strongly to the words "dependence" and "dependabihty".

Trust - the accepted dependence of a component, on a set of properties (func
tional and/or non-functional) of another component, subsystem or system

In consequence, a trusted component has a set of properties that are relied
upon by another component (or components). If A trusts B, then A accepts that
a violation in those properties of B might compromise the correct operation of A.
Note that trust is not absolute: the degree of trust placed by A on B is expressed
by the set of properties, functional and non-functional, which A trusts in B (for
example, that a smart card: PI- Gives a correct signature for every input; P2-
Has an MTTF of lOh (to a given level of threat...)).

Observe that those properties of B trusted by A might not correspond quan
titatively or qualitatively to B's actual properties. However, in order for the
relation implied by the definition of trust to be substantiated, trust should be
placed to the extent of the component's trustworthiness. In other words, trust,
the belief that B is dependable, should be placed in the measure of B's depend
ability.

Intrusion-Tolerant Architectures: Concepts and Design 11

Trustworthiness - the measure in which a component, subsystem or system,
meets a set of properties (functional and/or non-functional)

The trustworthiness of a component is, not surprisingly, defined by how well
it secures a set of functional and non-functional properties, deriving from its
architecture, construction, and environment, and evaluated as appropriate. A
smart card used to implement the example above should actually meet or exceed
PI and P2, in the envisaged operation conditions.

The definitions above have obvious (and desirable) consequences for the de
sign of intrusion tolerant systems: trust is not absolute, it may have several
degrees, quantitatively or qualitatively speaking; it is related not only with
security-related properties but with any property (e.g., timeliness); trust and
trustworthiness lead to complementary aspects of the design and verification
process. In other words, when A trusts B, A assumes something about B. The
trustworthiness of B measures the coverage of that assumption.

In fact, one can reason separately about trust and trustworthiness. One can
define chains or layers of trust, make formal statements about them, and vali
date this process. In complement to this, one should ensure that the components
involved in the above-mentioned process are endowed with the necessary trust
worthiness. This alternative process is concerned with the design and verification
of components, or of verification/certification of existing ones (e.g., COTS). The
two terms establish a separation of concerns on the failure modes: of the higher
level algorithms or assertions (e.g., authentication/authorization logics); and of
the infrastructure running them (e.g., processes/servers/communications).

The intrusion-tolerance strategies should rely upon these notions. The asser
tion 'trust on a trusted component' inspires the following guidelines for the con
struction of modular fault tolerance in complex systems: components are trusted
to the extent of their trustworthiness; there is separation of concerns between
what to do with the trust placed on a component (e.g., building fault-tolerant al
gorithms), and how to achieve or show its trustworthiness (e.g., constructing the
component). The practical use of these guidelines is exemplified in later sections.

3.3 Coverage and Separation of Concerns

Let us analyse how to build justified trust under the AVI model. Assume that
component C has predicate P that holds with a coverage Pr^ and this defines the
component's trustworthiness, {P,Pr). Another component B should thus trust
C to the extent of C possessing P with a probability Pr. So, there can be failures
consistent with the limited trustworthiness of C (i.e., that Pr < 1): these are
"normal", and who/whatever depends on C, like B, should be aware of that fact,
and expect it (and maybe take provisions to tolerate the fact in a wider system
perspective).

However, it can happen that B trusts C to a greater extent than it should:
trust was placed on C to an extent greater than its trustworthiness, perhaps
due to a wrong or neglecting perception of the latter. This is a mistake of
who/whatever uses that component, which can lead to unexpected failures.

12 Paulo Esteves Ven'ssimo et al.

(a) (b)

Fig. 3. Building trust

Finally, it can happen that the claim made about the trustworthiness of C
is wrong (about predicate P, or its coverage Pr, or both). The component fails
in worse, earlier, or more frequent modes than stated in the claim made about
its resilience. In this case, even if B trusts C to the extent of (P, Pr) there can
also be unexpected failures. However, this time, due to a mistake of whoever
architected/built the component.

Ultimately, what does it mean for component B to trust component C? It
means that B assumes something about C. Generalizing, assume a set B of
participants {Bi — Bn), which run an algorithm offering a set of properties A, on
a run-time support environment composed itself of a set C of components (Ci —
C„). This modular vision is very adequate for, but not confined to, distributed
systems. Imagine the environment as depicted in Figure 3a: C is architected so
as to offer a set of properties, call it H. This serves as the support environment
on which B operates, as suggested by the shaded cushion in Figure 3b.

Observe that B trusts C to provide H: B depends on the environment's prop
erties H to implement the algorithm securing properties A. Likewise, a user of
B trusts the latter to provide A. Without further discourse, this chain of trust
would be: if C is trusted to provide H, then B is trusted to provide A.

Now let us observe the trustworthiness side. H holds with a probabilitj^ Pr^,
the environmental assumption coverage [30]:

Pre = Pr{H\f) , / - any fault

Pre measures the trustworthiness of C (to secure properties H). Given H, A
has a certain probability (can be 1 if the algorithm is deterministic and correct,
can be less than one if it is probabilistic, and/or if it has design faults) of being
fulfilled, the coverage Pro or operational assumption coverage:

Pro = Pr{A\H)
Pro measures the confidence on B securing properties A (given H as en

vironment). Then, the trustworthiness of individual component B (to secure
properties A given H) would be given by Pro.

Intrusion-Tolerant Architectures: Concepts and Design 13

As we propose, these equations should place limits on the extent of trust
relations. B should trust C to the extent of providing H with confidence Prg < 1.
However, since the user's trust on B is implied by S's trust on C, then the user
should trust B not in isolation, but conditioned to C's trustworthiness, that is,
to the extent of providing A with confidence:

Pra = Pro X Pre = Pr{A\H) x Pr{H\f) = Pr{A\f), f - any fault
The resulting chain could go on recursively. Pra is the probabiHty that a

user of the system composed of B and C enjoys properties A, in other words, it
measures its trustworthiness.

4 IT Frameworks and Mechanisms

After introducing intrusion tolerance concepts, we begin this section by briefly
analysing the main frameworks with which the architect can work in order
to build intrusion tolerant systems: secure and fault-tolerant communication;
software-based intrusion tolerance; hardware-based intrusion tolerance; audit
ing and intrusion detection. We will also look at several known security frame
works [33] under an IT perspective. Then we review error processing mechanisms
in order to recover from intrusions.

4.1 Secure and Fault-Tolerant Communication

This is the framework concerning the body of protocols ensuring intrusion toler
ant communication. Essentially, relevant to this framework are secure channels
and secure envelopes, and classic fault tolerant communication.

Several techniques assist the design of fault-tolerant communication proto
cols. Their choice depends on the answer to the following question: What are the
classes of failures of communication network components?

For the architect, this establishes the fundamental link between security and
fault tolerance. In classical fault tolerant communication, it is frequent to see
omissive fault models (crash, omissions, etc.). In IT the failure mode assumptions
should be oriented by the AVI fault model, and by the way specific components'
properties may restrict what should be the starting assumption: arbitrary fail
ure (combination of omissive and assertive behaviour). In fact, this is the most
adequate baseline model to represent malicious intelligence.

4.2 Software-Based Intrusion Tolerance

Software-based fault tolerance has primarily been aimed at tolerating hardware
faults using software techniques. Another important facet is software fault tol
erance, aimed at tolerating software design faults by design diversity. Finally, it
has long been known that software-based fault tolerance by replication may also
be extremely effective at handling transient and intermittent software faults [33].

Let us analyse what can be done under an IT perspective. In the case of
design or configuration faults, simple replication would apparently provide little

14 Paulo Esteves Veri'ssimo et al.

help: errors would systematically occur in all replicas. This is true from a vulner
ability viewpoint: it is bound to exist in all replicas. However, the common-mode
syndrome under the AVI model concerns intrusions, or attack-vulnerability pairs,
rather than vulnerabilities alone.

This gives the architect some chances. Consider the problem of common-mode
vulnerabilities, and of common-mode attacks, i.e. attacks that can be cloned
and directed automatically and simultaneously to all (identical) replicas. Design
diversity can be applied, for example, by using different operating systems, both
to reduce the probability of common-mode vulnerabilities (the classic way), and
to reduce the probability of common-mode attacks (by obliging the attacker to
master attacks to more than one architecture) [9]. Both reduce the probability
of common-mode intrusion, as desired.

However, even mere replication with homogeneous components can yield sig
nificant results. How? When components have a high enough trustworthiness
that claims can be made about the hardness of achieving a successful attack-
vulnerability match on one of them (e.g. "breaking" it). In this case, we could
apply the classical principle of achieving a much higher reliability of a replica
set than the individual replicas' reliability. For example, simple replication can
be used to tolerate attacks, by making it difficult and lengthy for the attacker
to launch simultaneous attacks to all replicas with success.

4.3 Hardware-Based Intrusion Tolerance

Software-based and hardware-based fault tolerance are not incompatible design
frameworks [33]. In a modular and distributed systems context, hardware fault
tolerance today should rather be seen as a means to construct fail-controlled
components, in other words, components that are prevented from producing
certain classes of failures. This contributes to establish improved levels of trust
worthiness, and to use the corresponding improved trust to achieve more efficient
fault-tolerant systems.

Distributed algorithms that tolerate arbitrary faults are expensive in both
resources and time. For efficiency reasons, the use of hardware components with
enforced controlled failure modes is often advisable, as a means for providing
an infrastructure where protocols resilient to more benign failures can be used,
without that implying a degradation in the resilience of the system to malicious
faults.

4.4 Auditing and Intrusion Detection

Logging system actions and events is a good management procedure, and is
routinely done in several operating systems. It allows a posteriori diagnosis of
problems and their causes, by analysis of the logs. Audit trails are a crucial
framework in security.

Intrusion Detection (ID) is a classical framework in security, which has en
compassed all kinds of attempts to detect the presence or the likelihood of an

Intrusion-Tolerant Architectures: Concepts and Design 15

intrusion. ID can be performed in real-time, or off-line. In consequence, an in
trusion detection system (IDS) is a supervision system that follows and logs
system activity, in order to detect and react (preferably in real-time) against
any or all of: attacks (e.g. port scan detection), vulnerabilities (e.g. scanning),
and intrusions (e.g. correlation engines).

An aspect deserving mention under an IT viewpoint is the dichotomy between
error detection and fault diagnosis, normally concealed in current ID systems [1].
Why does it happen, and why is it important? It happens because IDS are
primarily aimed at complementing prevention and triggering manual recovery.
It is important because if automatic recovery (fault tolerance) of systems is
desired, there is the need to clearly separate: what are errors as per the security
policy specification; what are faults, as per the system fault model. Faults (e.g.,
attacks, vulnerabilities, intrusions) are to be diagnosed, in order that they can
be treated (e.g. passivated, removed). Errors are to be detected, in order that
they can be automatically processed in real-time (recovered, masked).

ID as error detection will be detailed later in the paper. It addresses detec
tion of erroneous states in a system computation, deriving from malicious action
e.g., modified files or messages, OS penetration by buffer overflow. ID as fault
diagnosis seeks other purposes, and as such, both activities should not be mixed.
Regardless of the error processing mechanism (recovery or masking), adminis
tration subsystems have a paramount action w.r.t. fault diagnosis. This facet
of classical ID fits into fault treatment [1]. It can serve to give early warning
that errors may occur (vulnerability diagnosis, attack forecasting), to assess the
degree of success of the intruder in terms of corruption of components and sub
systems (intrusion diagnosis), or to find out who/what performed an attack or
introduced a vulnerability (attack diagnosis).

4.5 Processing the Errors Deriving from Intrusions

Next we review classes of mechanisms for processing errors deriving from in
trusions. Essentially, we discuss the typical error processing mechanisms used
in fault tolerance, under an IT perspective: error detection; error recovery; and
error masking.

Error detection is concerned with detecting the error after an intrusion is
activated. It aims at: confining it to avoid propagation; triggering error recovery
mechanisms; triggering fault treatment mechanisms. Examples of typical errors
are: forged or inconsistent (Byzantine) messages; modified files or memory vari
ables; phoney OS accounts; sniffers, worms, viruses, in operation.

Error recovery is concerned with recovering from the error once it is detected.
It aims at: providing correct service despite the error; recovering from effects of
intrusions. Examples of backward recovery are: the system goes back to a previ
ous state known as correct and resumes; the system having suffered DoS (denial
of service) attack, re-executes the affected operation; the system having detected
corrupted files, pauses, reinstalls them, goes back to last correct point. Forward
recovery can also be used: the system proceeds forward to a state that ensures
correct provision of service; the system detects intrusion, considers corrupted

16 Paulo Esteves Ven'ssimo et al.

operations lost and increases level of security (threshold/quorums increase, key
renewal); the system detects intrusion, moves to degraded but safer operational
mode.

Error masking is a preferred mechanism when, as often happens, error detec
tion is not reliable or can have large latency. Redundancy is used systematically
in order to provide correct service without a noticeable glitch. As examples: sys
tematic voting of operations; Byzantine agreement and interactive consistency;
fragmentation-redundancy-scattering; sensor correlation (agreement on impre
cise values).

4.6 Intrusion Detection Mechanisms

As to the methodology employed, classic ID systems belong to one (or a hybrid)
of two classes: behaviour-based (or anomaly) detection systems; and knowledge-
based (or misuse) detection systems.

Behaviour-based (anomaly) detection systems are characterized by needing
no knowledge about specific attacks. They are provided with knowledge about
the normal behaviour of the monitored system, acquired e.g., through extensive
training of the system in correct operation. As advantages: they do not require
a database of attack signatures that needs to be kept up-to-date. As drawbacks:
there is a significant potential for false alarms, namely if usage is not very pre
dictable with time; they provide no information (diagnosis) on type of intrusion,
they just signal that something unusual happened.

Knowledge-based (misuse) systems rely on a database of previously known
attack signatures. Whenever an activity matches a signature, an alarm is gen
erated. As advantages: alarms contain diagnostic information about the cause.
The main drawback comes from the potential for omitted or missed alarms, e.g.
unknown attacks (incomplete database) or new attacks (on old or new vulnera
bilities) .

Put under an IT perspective, error detection mechanisms of either class can
and should be combined. Combination of ID with automated recovery mecha
nisms is a research subject in fast progress[l, 14, 23,11].

5 Intrusion Tolerance Strategies

Not surprisingly, intrusion tolerance strategies derive from a confluence of classi
cal fault tolerance and security strategies [33]. Strategies are conditioned by sev
eral factors, such as: type of operation, classes of failures (i.e., power of intruder);
cost of failure (i.e., limits to the accepted risk); performance; cost; available tech
nology. Technically, besides a few fundamental tradeoffs that should always be
made in any design, the grand strategic options for the design of an intrusion-
tolerant system develop along a few main lines that we discuss in this section.
We describe what we consider to be the main strategic lines that should be con
sidered by the architect of IT systems, in a list that is not exhaustive. Once a
strategy is defined, design should progress along the guidelines suggested by the
several intrusion-tolerance frameworks just presented.

Intrusion-Tolerant Architectures: Concepts and Design 17

5.1 Fault Avoidance vs. Fault Tolerance

The first issue we consider is oriented to the system construction, whereas the
remaining are related with its operational purpose. It concerns the balance be
tween faults avoided (prevented or removed) and faults tolerated.

On the one hand, this is concerned with the 'zero-vulnerabilities' goal taken
in many classical security designs. The Trusted Computing Base paradigm [36],
when postulating the existence of a computing nucleus that is impervious to
hackers, relies on that assumption. Over the years, it became evident that this
was a strategy impossible to follow in generic system design: systems are too
complex for the whole design and configuration to be mastered. On the other
hand, this balance also concerns attack prevention. Reducing the level of threat
improves on the system resilience, by reducing the risk of intrusion. However, for
obvious reasons, this is also a very limited solution. As an example, the firewall
paranoia of preventing attacks on intranets also leaves many necessary doors
(for outside connectivity) closed in its way.

Nevertheless, one should avoid falling in the opposite extreme of the spectrum
—assume the worst about system components and attack severity— unless the
criticality of the operation justifies a 'minimal assumptions' attitude. This is
because arbitrary failure protocols are normally costly in terms of performance
and complexity.

The strategic option of using some trusted components— for example in criti
cal parts of the system and its operation— may yield more performant protocols.
If taken under a tolerance (rather than prevention) perspective, very high levels
of dependability may be achieved. But the condition is that these components
be made trustworthy (up to the trust placed on them, as we discussed earlier),
that is, that their faulty behaviour is indeed limited to a subset of the possible
faults. This is achieved by employing techniques in their construction that lead
to the prevention and/or removal of the precluded faults, be them vulnerabilities,
attacks, intrusions, or other faults (e.g. omission, timing, etc.).

The recursive (by level of abstraction) and modular (component-based) use
of fault tolerance and fault prevention/removal when architecting a system is
thus one of the fundamental strategic tradeoffs in solid but effective IT system
design. This approach was taken in previous architectural works [29], but has an
overwhelming importance in IT, given the nature of faults involved.

5.2 Confidential Operation

When the strategic goal is confidentiality, the system should preferably be archi
tected around error masking, resorting to schemes that despite allowing partial
unauthorised reads of pieces of data, do not reveal any useful information. Or
schemes that by requiring a quorum above a given threshold to allow access to
information, withstand levels of intrusion to the access control mechanism that
remain below that threshold. Schemes relying on error detection/recovery are
also possible. However, given the specificity of confidentiality (once read, read
forever...), they will normally imply some form of forward, rather than backward

18 Paulo Esteves Verfssimo et al.

recovery, such as rendering the unduly read data irrelevant in the future. They
also require low detection latency, to mitigate the risk of error propagation and
eventual system failure (in practical terms, the event of information disclosure).

5.3 Perfect Non-stop Operation

When no ghtch is acceptable, the system must be architected around error mask
ing, as in classical fault tolerance. Given a set of failure assumptions, enough
space redundancy must be supplied to achieve the objective. On the other hand,
adequate protocols implementing systematic error masking under the desired
fault model must be used (e.g. Byzantine-resilient, TTP-based, etc.). However,
note that non-stop availability against general denial-of-service attacks is still
an ill-mastered goal in open systems.

5.4 Reconfigurable Operation

Non-stop operation is expensive and as such many services resort to cheaper re
dundancy management schemes, based on error recovery instead of error mask
ing. These alternative approaches can be characterized by the existence of a
visible glitch. The underlying strategy, which we call reconfigurable operation, is
normally addressed at availability- or integrity-oriented services, such as trans
actional databases, web servers, etc.

The strategy is based on intrusion detection. The error symptom triggers a
reconfiguration procedure that automatically replaces a failed component by a
correct component, or an inadequate or incorrect configuration by an adequate or
correct configuration, under the new circumstances (e.g. higher level of threat).
For example, if a database replica is attacked and corrupted, it is replaced by
a backup. During reconfiguration the service may be temporarily unavailable or
suffer some performance degradation, whose duration depends on the recovery
mechanisms. If the AVI sequence can be repeated (e.g., while the attack lasts),
the service may resort to configurations that degrade QoS in trade for resilience,
depending on the policy used (e.g., temporarily disabling a service that contains
a vulnerability that cannot be removed, or switching to more resilient but slower
protocols).

5.5 Recoverable Operation

Disruption avoidance is not always mandatory, and this may lead to cheaper
and simpler systems. Furthermore, in most denial-of-service scenarios in open
systems (Internet), it is generically not achievable.

Consider that a component crashes under an attack. An intrusion-tolerant
design can still be obtained, if a set of preconditions hold for the component:
(a) it takes a lower-bounded time Tc to fall; (b) it takes a upper-bounded time
Tr to recover; (c) the duration of blackouts is short enough for the application's
needs.

Intrusion-Tolerant Architectures: Concepts and Design 19

Unlike what happens with classic FT recoverable operation [33], where (c)
only depends on (b), here the availability of the system is defined in a more
elaborate way, proportionate to the level of threat, in terms of attack severity
and duration. Firstly, for a given attack severity, (a) determines system reliability
under attack. If an attack lasts less than Tc, the system does not even crash.
Secondly, (a) and (b) determine the time for service restoration. For a given
attack duration Ta, the system may either recover completely after T^ {Ta <
Tc+Tr), or else cycle up-down, with a duty cycle of Tc/{Tc+Tr) (longer attacks).

Moreover, the crash, which is provoked maliciously, must not give rise to in
correct computations. This may be achieved through several techniques, amongst
which we name secure check-pointing and logging. Recoverable exactly-once op
eration can be achieved with intrusion-tolerant atomic transactions [33]. In dis
tributed settings, these mechanisms may require secure agreement protocols.

This strategy concerns applications where at the cost of a noticeable tem
porary service outage, the least amount of redundancy is used. The strategy
also serves long-running applications, such as data mining or scientific computa
tions, where availability is not as demanding as in interactive applications, but
integrity is of primary concern.

5.6 Fail-Safe

In certain situations, it is necessary to provide for an emergency action to be
performed in case the system can no longer tolerate the faults occurring, i.e. it
cannot withstand the current level of threat. This is done to prevent the system
from evolving to a potentially incorrect situation, suffering or doing unexpected
damage. In this case, it is preferable to shut the system down at once, what
is called fail-safe behaviour. This strategy, often used in safety- and mission-
critical systems, is also important in intrusion tolerance, for obvious reasons. It
may complement other strategies described above.

6 Modelling Malicious Faults

A crucial aspect of any fault-tolerant architecture is the fault model upon which
the system architecture is conceived, and component interactions are defined.
The fault model conditions the correctness analysis, both in the value and time
domains, and dictates crucial aspects of system configuration, such as the place
ment and choice of components, level of redundancy, types of algorithms, and
so forth. A system fault model is built on assumptions about the way system
components fail.

What are malicious faults? In the answer to this question lies the crux of the
argument with regard to "adequate" intrusion fault models. The term 'malicious'
is itself very suggestive, and means a special intent to cause damage. But how
do we model the mind and power of the attacker? Indeed, many works have
focused on the 'intent', whereas from an IT perspective, one should focus on the
'result'. That is, what should be extracted from the notion of 'maliciousness' is a

20 Paulo Esteves Ven'ssimo et al.

technical definition of its objective: the violation of several or all of the properties
of a given service, attempted in any possible manner within the power available
to the intruder.

Classically, failure assumptions fall into essentially two kinds: controlled fail
ure assumptions, and arbitrary failure assumptions.

Controlled failure assumptions specify qualitative and quantitative bounds
on component failures. For example, the failure assumptions may specify that
components only have timing failures, and that no more than / components
fail during an interval of reference. Alternatively, they can admit value failures,
but not allow components to spontaneously generate or forge messages, nor
impersonate, collude with, or send conflicting information to other components.
In the presence of accidental faults this approach is realistic, since it represents
very well how common systems work, failing in a benign manner most of the
time. However, it can hardly be directly extrapolated to malicious faults, under
the above deiinition of maliciousness.

Arbitrary failure assumptions ideally specify no qualitative or quantitative
bounds on component failures. In this context, an arbitrary failure means the
capability of generating an interaction at any time, with whatever syntax and
semantics (form and meaning), anywhere in the system. Arbitrary failure as
sumptions adapt perfectly to the notion of maliciousness, but they are costly to
handle, in terms of performance and complexity, and thus are not compatible
with the user requirements of the vast majority of today's on-line applications.

Note that the problem hes in how representative are our assumptions vis-a
vis what happens in reality. That is, a problem of coverage of our assumptions.
So, how to proceed?

6.1 Arbitrary Failure Assumptions

Consider operations of very high value and/or criticality, such as: financial trans
actions; contract signing; provision of long term credentials; state secrets. The
risk of failure due to violation of assumptions should not be incurred. This jus
tifies considering arbitrary failure assumptions, and building the system around
arbitrary-failure resilient building blocks (e.g. Byzantine agreement protocols),
despite a possible performance penalty.

In consequence, no assumptions are made on the existence of trusted com
ponents such as security kernels or other fail-controlled components. Likewise, a
time-free or asynchronous approach must be followed, i.e. no assumptions about
timeliness, since timing assumptions are susceptible to be attacked. This lim
its the classes of apphcations that can be addressed under these assumptions:
asynchronous models cannot solve timed problems.

In practice, many of the emerging applications we see today, particularly
on the Internet, have interactivity or mission-criticality requirements. Timeli
ness is part of the required attributes, either because of user-dictated quality-
of-service requirements (e.g., network transaction servers, multimedia rendering,
synchronised groupware, stock exchange transaction servers), or because of safety

Intrusion-Tolerant Architectures: Concepts and Design 21

constraints (e.g., air traffic control). So we should seek alternative fault model
frameworks to address these requirements under malicious faults.

6.2 Hybrid Failure Assumptions Considered Useful

Hybrid assumptions combining several kinds of failure modes would be desir
able. There is a body of research, starting with [25] on hybrid failure models
that assume different failure type distributions for different nodes. For instance,
some nodes are assumed to behave arbitrarily while others are assumed to fail
only by crashing. The probabilistic foundation of such distributions might be
hard to sustain in the presence of malicious intelligence, unless their behaviour
is constrained in some manner. Consider a component or sub-system for which
given controlled failure assumptions were made. How can we enforce trustwor
thiness of the component vis-a-vis the assumed behaviour, that is, coverage of
such assumptions, given the unpredictability of attacks and the elusiveness of
vulnerabilities?

A composite (AVI) fault model with hybrid failure assumptions is one where
the presence and severity of vulnerabilities, attacks and intrusions varies from
component to component. Some parts of the system would justifiably exhibit fail-
controlled behaviour, whilst the remainder of the system would still be allowed an
arbitrary behaviour. This might best be described as architectural hybridisation,
in the line of works such as [28,34,13], where failure assumptions are in fact
enforced by the architecture and the construction of the system components, and
thus substantiated. That is (see Section 3) the component is made trustworthy
enough to match the trust implied by the fail-controlled assumptions.

The task of the architect is made easier since the controlled failure modes
of some components vis-a-vis malicious faults restrict the system faults the
component can produce. In fact a form of fault prevention was performed at
system level: some kinds of system faults are simply not produced. Intrusion-
tolerance mechanisms can now be designed using a mixture of arbitrary-failure
(fail-uncontrolled or non trusted) and fail-controlled (or trusted) components.

Hybrid failure assumptions can also be the key to secure timed operation.
With regard to timeliness and timing failures, hybridisation yields forms of par
tial synchrony: (i) some subsystems exhibit controlled failure modes and can
thus supply timed services in a secure way; (ii) the latter assist the system in
fulfilling timeliness specifications; (iii) controlled failure of those specifications is
admitted, but timing failure detection can be achieved with the help of trusted
components [13].

7 Architecting Intrusion-Tolerant Systems

In this section, we discuss a few notions on architecting intrusion-tolerant sys
tems.

22 Paulo Esteves Verissimo et al.

7.1 (Almost) no Assumptions

The fail-uncontrolled or arbitrary failure approach to I T architecture is based
on assuming as little as possible about the environment 's behaviour (faults, syn
chronism), with the intent of maximizing coverage. I t provides a conceptually
simple framework for developing and reasoning about the correctness of an al
gorithm, satislying safety under any conditions, and providing liveness under
certain conditions, normally defined in a probabilistic way.

Randomised Byzantine agreement protocols are an example of typical pro
tocols in this approach. They may not terminate with non-zero probability, but
this probability can be made negligible. In fact, a protocol using cryptography
always has a residual probabihty of failure, determined by the key lengths. Of
course, for the system as a whole to provide useful service, it is necessary tha t
at least some of the components are correct. This approach is essentially para
metric: it will remain correct if a sufficient number of correct part icipants exist,
for any hypothesised number of faulty participants / . Or in other words, with
almost no assumptions one is able to achieve extremely resilient protocols.

This has some advantages for the design of secure distributed systems, which
is one reason for pursuing such an approach. In fact, sometimes it is necessary
and worthwhile to sacrifice performance or timeliness for resilience, for example
for very critical operations (key distribution, contract signing, etc.)

(a) (b)

Fig. 4. Arbitrary failure approach

Figure 4 shows the principle in simple terms. The metaphore used from now
on is: greyer for hostile, malicious, and whiter for benign, correct. Figure 4a
shows the participants being immersed in a hostile and asynchronous environ
ment. The individual hosts and the communication environment are not trusted.
Participants may be malicious, and normally the only restriction assumed is in
the number of ill-behaved participants. Figure 4b suggests that the protocol, cop
ing with the environment's deficiencies, ensures that the participants collectively
provide a correct service (whiter shade).

Intrusion-Tolerant Architectures: Concepts and Design 23

7.2 Non-justified Assumptions, or the Power of Faith

Alternatively, IT architecture may take the fail-controlled approach. Sometimes,
it may simply be assumed that the environment is benign, without substantiating
those assumptions. This is often done in accidental fault tolerance, when the
environment is reasonably well-known, for example, from statistic measurements.
Is it a reasonable approach for malicious faults?

Fig. 5. Non-justified assumptions

Figure 5a shows the participants being immersed in an assumed moderately
benign environment (essentially white, with a thin dark part, according to our
metaphors). For example, it is usual to consider that the individual hosts (local
environment) are trusted, and that the communication environment, though
not trusted has a given limited attack model. Some user participants may be
malicious.

The implementation is bound to work most of the times. However, it should
not be surprising that a behaviour that is assumed out of statistic evidence (or
worse, out of faith...) and not by enforcement, can be defrauded by an intruder
attacking the run-time environment. Thus, it may turn out that the latter be
haves in a manner worse than assumed (e.g., hosts were not that trustworthy,
or the communication support was more severely attacked than the model as
sumed), as suggested in Figure 5b where, say upon an attack, the environment
is shown actually more aggressive than initially thought in Figure 5 a.

In consequence, making assumptions that are not substantiated in a strong
manner may in many cases lead to the lack of trustworthiness (coverage) on the
properties of a component or subsystem (suggested in our example by the dark
shade partially hitting the participants and protocol). This may be problem
atic, because it concerns failures not assumed, that is, for which the protocol is
not prepared, and which may be orchestrated by malicious intelligence. Their
consequences may thus be unpredictable. We discuss a correct approach below.

24 Paulo Esteves Verissimo et al.

7.3 Architectural Hybridisation

Architectural hybridisation is a solid guiding principle for architecting fail-con
trolled IT systems. One wishes to avoid the extreme of arbitrary assumptions,
without incurring the risks of lack of coverage. Assuming something means trust
ing, as we saw earher on, and so architectural hybridisation is an enabler of the
approach of using trusted components, by making them trustworthy enough.

Essentially, the architect tries to make available black boxes with benign
behaviour, of omissive or weak fail-silent class [33]. These can have different
capabilities (e.g. synchronous or not; local or distributed), and can exist at dif
ferent levels of abstraction. A good approach is to dress them as run-time envi
ronment components, which can be accessed by system calls but provide trust
worthy results, in contrast with calls to an untrusted environment. Of course,
fail-controlled designs can yield fault-tolerant protocols that are more efficient
than truly arbitrary assumptions protocols, but more robust than non-enforced
controlled failure protocols.

The tolerance attitude in the design of hybrid IT systems can be characterized
by a few aspects:

• assuming as little as possible from the environment or other components;

• making assumptions about well-behaved (trusted) components or parts of
the environment whenever strictly necessary;

• enforcing the assumptions on trusted components, by construction;

• unlike classical prevention-based approaches, trusted components do not in
tervene in all operations, they assist only crucial steps of the execution;

• protocols run thus in an non-trusted environment, single components can be
corrupted, faults (intrusions) can occur;

• correct service is built on distributed fault tolerance mechanisms, e.g., agree
ment and replication amongst participants in several hosts.

7.4 Prevention, Tolerance, and a Bit of Salt

On achieving trustworthy components, the architect should bear in mind a recipe
discussed earlier: the good balance between prevention and tolerance. Let us
analyze the principles of operation of a trusted third party (TTP) protocol, as
depicted in Figure 6a. Participants Alice, Paul and Bob, run an IT protocol
amongst themselves, and trust Trent, the TTP component, to provide a few
services that assist the protocol in being intrusion tolerant. What the figure
does not show and is seldom asked is: is the TTP trustworthy?

In fact, the TTP is the perfect example of a trusted component that is some
times (often?) trusted to an extent greater than its trustworthiness.

In Figure 6b we "open the lid" of the TTP and exemplify how a good combi
nation of prevention and tolerance can render it trustworthy. To start with, we
require certificate-based authentication, as a means to prevent certain failures
from ocurring in the point-to-point interaction of participants with the TTP
(e.g., impersonation, forging, etc.). Then, if we replicate the TTP, we make it

Intrusion-Tolerant Architectures: Concepts and Design 25

(Paul 1

(a) (b)

Fig. 6. (a) TTP protocol; (b) Enforcing TTP trustworthiness

resilient to crashes, and to a certain level of attacks on the TTP server repli
cas, if there is enough redundancy. Furthermore, the replicas should communi
cate through self-enforcing protocols of the Byzantine-resilient kind, if malicious
faults can be attempted at subsets of server replicas.

The user need not be aware of the additional complexity and distribution of
the TTP, a usual principle in fault tolerance. In fact, we should "close the lid"
so that participants see essentially a single logical entity which they trust (as in
Figure 6a). However, by having worked at component level (TTP), we achieve
trustworthy behaviour of the component as seen at a higher level (system). Note
that in fact, we have prevented some system faults from occurring. This dual
ity prevention/tolerance can be apphed recursively in more than one instance.
Recently, there has been extensive research on making trustworthy TTPs, for
example by recursively using intrusion tolerance mechanisms [1,38].

7.5 Using Trusted Components

The relation of trust/trustworthiness can be applied in general when architecting
IT systems, as we saw in the last section. However, particular instantiations of
trusted components deserve mention here.

IT protocols can combine extremely high efficiency with high resilience if
supported by locally accessible trusted components. For example, the notion
of security kernel in IT would correspond to a fail-controlled local subsystem
trusted to execute a few security-related functions correctly, albeit immersed in
the remaining environment, subjected to malicious faults.

This can be generalised to any function, such as time-keeping, or failure de
tection. In that sense, a local trusted component would encapsulate, and supply
in a trusted way, a set of functions, considered crucial for protocols and services
having to execute in a hostile environment. The use of trusted hardware (e.g.
smart cards, appliance boards) may serve to amplify the trustworthiness of these
special components. In Figure 7a we see an example of an architecture featur
ing LTCs (local trusted components). Inter-component communication should

26 Paulo Esteves Ven'ssimo et al.

(a) (b)

Fig. 7. Using trusted components: (a) Local; (b) Distributed

ensure that correct components enjoy the properties of the LTC despite mali
cious faults. On the other hand, the implementation of the LTC should ensure
that malicious components, such as the one on the right of Figure 7a, do not
undermine the operation of the LTC, making it work incorrectly.

Figure 7b shows a distributed trusted component (DTC). It amplifies the
power of a LTC, since it assumes the existence of not only local trusted exe
cution, but also a trusted channel among LTCs. This makes it possible to im
plement distributed trust for low-level operations (e.g., distribution of message
authentication codes- MACS). It can be built for example with appliance boards
with a private control channel, such as a second network attachment in a host.

A DTC can assist protocols in number of ways, which we discuss with more
detail in later sections of the paper, but the fundamental rationale is the follow
ing:

• protocol participants have to exchange messages in a world full of threats,
some of them may even be malicious and cheat (the normal network);

• there is a channel that correct participants trust, and which they can use to
get in touch with each other, even if for rare and short moments;

• they can use this channel to synchronise, disseminate, and agree on, simple
but crucial facts of the execution of a protocol, and this limits the potential
for Byzantine actions from malicious participants.

8 Some Example Systems

The term "intrusion tolerance" appeared originally in a paper by Praga and Pow
ell [19]. Later their scheme -Fragmentation-Redundancy-Scattering- was used in
the DELTA-4 project to develop an intrusion-tolerant distributed server com
posed by a set of insecure sites [16].

In the following years a number of isolated IT protocols and systems emerged,
BFT [10] is an efficient state-machine rephcation algorithm [32]. It has been used
to implement an intrusion-tolerant NFS server. Rampart provides tools for build
ing IT distributed services: reliable multicast, atomic multicast and membership

Intrusion-Tolerant Architectures: Concepts and Design 27

protocols [31]. SecureRing is a view-synchronous group communication system
based on the Totem single-ring protocols [22]. Both Rampart and SecureRing can
be used to build servers using the state-machine replication approach. Fleet [24]
use Byzantine quorum systems [2] to build IT data stores, respectively for data
abstractions like variables and locks, and for Java objects. The protocol suite
CLIQUES supports group key agreement operations for dynamic groups of pro
cesses [4,3]. More recently, two projects have focused on intrusion tolerance,
OASIS and MAFTIA, developing several results that will be detailed ahead.

8.1 OASIS

Organically Assured and Survivahle Information System (OASIS) ^ is a US
DARPA program with the goal of providing "defence capabilities against so
phisticated adversaries to allow sustained operation of mission critical functions
in the face of known and future cyber attacks against information systems". The
program has a strong focus in intrusion tolerance. Its objectives are:

— to construct intrusion-tolerant systems based on potentially vulnerable com
ponents;

— to characterize the cost-benefits of intrusion tolerance mechanisms;
— to develop assessment and validation methodologies to evaluate intrusion

tolerance mechanisms.

OASIS is financing something like 30 projects. It is not possible to describe
all of them so we survey a few that we find interesting and representative.

Intrusion Tolerance by Unpredictable Adaptation (ITUA) aims to develop
a middleware to help design applications that tolerate certain classes of at
tacks [14]. The ITUA architecture is composed by security domains, that abstract
the notion of boundaries that are difficult by an attacker to cross (e.g., a LAN
protected by a firewall). An intrusion-tolerant application usually has to adapt
when there are attacks. ITUA proposes unpredictable adaptation as a means to
tolerate attacks that try to predict and take advantage of that adaptation. Adap
tation in ITUA is handled by the QuO middleware and group communication is
implemented as intrusion-tolerant layers in the Ensemble toolkit.

Intrusion Tolerant Architectures has the objective to develop a methodology
based on architectural concepts for constructing intrusion-tolerant systems. The
project developed an IT version of Enclaves, a middleware for supporting secure
group applications in insecure networks, like the Internet [18]. IT-Enclaves has
several leaders from which at most / out of n > 3 / -I-1 are allowed to be compro
mised. The leaders provide all group-management services: user authentication,
member join and leave, group-key generation, distribution, and refreshment.
Each member of the group is in contact with 2 / -|-1 leaders.

COCA is an on-line certification-authority for local and wide-area networks
[38]. COCA uses replicated servers for availability and intrusion-tolerance. The

^ http://www.toleraiitsystems.org/.

28 Paulo Esteves Veri'ssimo et al.

certificates that it produces are signed using a threshold cryptography algorithm.
COCA assumes an adversary takes a certain time to corrupt a number of servers,
therefore from time to time keys are changed (proactive security). Replication
is based on a Byzantine quorum system.

8.2 MAFTIA

Malicious- and Accidental-Fault Tolerance for Internet Applications (MAFTIA)^
is a recently finished EU 1ST project with the general objective of systematically
investigating the 'tolerance paradigm' for constructing large-scale dependable
distributed applications. The project had a comprehensive approach that in
cludes both accidental and malicious faults. MAFTIA followed three main lines
of action:

— definition of an architectural framework and a conceptual model;
— the design of mechanisms and protocols;
— formal validation and assessment.

The first line aimed to develop a coherent set of concepts for an architecture
that could tolerate malicious faults [1]. Work has been done on the definition
of a core set of intrusion tolerance concepts, clearly mapped into the classical
dependability concepts. The AVI composite fault model presented above was
defined in this context. Other relevant work included the definition of synchrony
and topological models, the establishment of concepts for intrusion detection and
the definition of a MAFTIA node architecture. This architecture includes com
ponents such as trusted and untrusted hardware, local and distributed trusted
components, operating system and runtime environment, software, etc.

Most MAFTIA work was on the second line, the design of IT mechanisms
and protocols. Part of that work was the definition of the MAFTIA middleware:
architecture and protocols [7]. An asynchronous suite of protocols, including reli
able, atomic and causal multicast was defined [8], providing Byzantine resilience
by resorting to efficient solutions based on probabilistic execution. Work was
also done on protocols based on a timed model, which relies on an innovative
concept, the wormholes, enhanced subsystems which provide components with a
means to obtain a few simple privileged functions and/or channels to other com
ponents, with "good" properties otherwise not guaranteed by the "normal" weak
environment [35]. For example, the Trusted Timely Computing Base developed
in MAFTIA (see next two sections) is based on a wormhole providing timely and
secure functions on enviroments that are asynchronous and Byzantine-on-failure.
Architectural hybridisation discussed earlier is used to implement the TTCB. In
the context of MAFTIA middleware, an IT transaction service with support for
multiparty transactions [37] was also designed.

Intrusion detection is assumed as a mechanism for intrusion tolerance but
also as a service that has to be made intrusion-tolerant. MAFTIA developed a

^ http://www.maftia.org/.

Intrusion-Tolerant Architectures: Concepts and Design 29

distributed IT intrusion detection system [15]. Problems like handling high rates
of false alarms and combining several IDSs were also explored.

Trusted Third Parties (TTPs) such as certification authorities are important
building blocks in today's Internet. MAFTIA designed a generic distributed cer
tification authority that uses threshold cryptography and IT protocols in order
to be intrusion-tolerant. Another TTP, the distributed optimistic fair exchange
service, was also developed.

MAFTIA defined an authorization service based on fine grain protection,
i.e., on protection at the level of the object method call [26]. The authorization
service is a distributed TTP which can be used to grant or deny authorization
for complex operations combining several method calls. The service relies on a
local security kernel.

The third line of work was on formalizing the core concepts of MAFTIA
and verifying and assessing the work on dependable middleware [27]. A novel
rigorous model for the security of reactive systems was developed and protocols
were modelled using CSP and FDR.

In the next sections, we describe some of our own work in more detail: the
construction of a Trusted Timely Computing Base using the principle of archi
tectural hybridisation, and a protocol using the TTCB wormhole.

Architectural Hybridisation in Practice. The Trusted Timely Computing
Base (TTCB) is a real-time secure wormhole [13]. The TTCB is a simple compo
nent providing a limited set of services. Its architecture is presented in Figure 8.
The objective is to support the execution of IT protocols and applications using
the architectural hybridisation approach introduced before.

^ HOSMI f Hostil Host nil

Payload Network

Fig. 8. System architecture with a TTCB

This experimental implementation of the TTCB was based on COTS com
ponents. The hosts are common Pentium PCs with a real-time kernel, RT-Linux
or RTAI. The hosts are interconnected by two Fast-Ethernet LANs. One corre
sponds to the payload network in Figure 8, while the other is the TTCB control-
channel. It is thus a configuration aimed at local environments, such as sites,
campuses, etc. Wide-area configurations are also possible, as discussed in [35].

30 Paulo Esteves Ven'ssimo et al.

The design of a system has both functional and non-functional aspects. Next
we describe the functionality of the TTCB -its services- and later we discuss
the how the security and timeliness (real-time) are enforced in the COTS based
TTCB.

The TTCB provides a Hmited set of services. From the point of view of pro
gramming they are a set of functions in a hbrary that can be called by processes
in the usual way. We use the word "process" to denominate whatever uses the
TTCB services: a normal process, a thread, or another software component.

The TTCB provides three security-related services. The Local Authentication
Service allows processes to communicate securely with the TTCB. The service
authenticates the local TTCB before a process and establishes a shared symmet
ric key between both, using a simple authenticated key establishment protocol.
This symmetric key is used to secure all their further communication. Every lo
cal TTCB has an asymmetric key pair, and we assume that the process manages
to get a correct copy of the local TTCB public key. The Trusted Block Agree
ment Service is the main building block for IT protocols. This service delivers a
value obtained from the agreement of values proposed by a set of processes. The
service is not intended to replace agreement protocols in the payload system:
it works with "small" blocks of data (currently 160 bits), and the TTCB has
limited resources to execute it. The service provides a set of functions that can
be used to calculate the result. For instance, it can select the value proposed by
more processes. A parameter of the service is a timestamp that indicates the last
instant when the service starts to be executed. This prevents malicious processes
from delaying the service execution indefinitely. The leist security-related service
is the Random Number Generation Service that provides uniformly distributed
random numbers. These numbers can be used as nonces or keys for cryptographic
primitives such as authentication protocols.

The TTCB provides also four time services. The Trusted Absolute Times-
tamping Service provides globally meaningful timestamps. It is possible to obtain
timestamps with this characteristic because local TTCBs clocks are s}mchro-
nized. The Trusted Duration Measurement Service measures the time of the
execution of an operation. The Trusted Timing Failure Detection Service checks
if a local or distributed operation is executed in an interval of time. The Trusted
Timely Execution Service executes special operations securely and within an
interval of time inside the TTCB.

RT-Linux and RTAI are two similar real-time engineerings of Linux. Linux
was modified so that a real-time executive takes control of the hardware, to en
force real-time behaviour of some real-time tasks. RT tasks were defined as spe
cial Linux loadable kernel modules so they run inside the kernel. The scheduler
was changed to handle these tasks in a preemptive way and to be configurable
to different scheduling disciplines. Linux runs as the lowest priority task and
its interruption scheme was changed to be intercepted by RT-Linux/RTAI. The
local part of a COTS-based TTCB is basically a (non-real-time) local kernel
module, that handles the service calls, and a set of two or more RT tasks that
execute all time constrained operations.

Intrusion-Tolerant Architectures: Concepts and Design 31

The local TTCB is protected by protecting the kernel. From the point of view
of security, RT-Linux/RTAI are very similar to Linux. Their main vulnerability
is the ability a superuser has to control any resource in the system. This vulner
ability is usually reasonably easy to exploit, e.g., using race conditions. Linux
capabilities are privileges or access control lists associated with processes that
allow a fine grain control on how they use certain objects. However, currently
the practical way of using this mechanism is quite basic. There is a system wide
capability bounding set that bounds the capabilities that can be held by any
system process. Removing a capability from that set disables the ability to use
an object until the next reboot. Although basic, this mechanism is sufficient
to protect the local TTCB. Removing the capability CAP.SYS-MODULE from
the capability bounding set we prevent any process from inserting code in the
kernel. Removing CAP.SYS-RAWIO we prevent any process from reading and
modifying the kernel memory.

For the COTS-based TTCB we make the assumption that the control channel
is not accessed physically. Therefore, security has to be guaranteed only in its
access points. To be precise, we must prevent an intruder from reading or writing
in the control channel access points. This is done by removing the control network
device from the kernel so that it can only be accessed by code in the kernel, i.e.,
by the local TTCB.

The control channel in the COTS-based TTCB is a switched Fast-Ethernet
LAN. The timeliness of that network packet is guaranteed preventing packet
collisions which would cause unpredictable delays. This requires that: (1) only
one host can be connected to each switch port (hubs cannot be used); and (2) the
traffic load has to be controlled. The first requirement is obvious. The second is
solved by an access control mechanism, that accepts or rejects the execution of a
service taking into account the availability of resources (buffers and bandwidth).

A Wormhole-Aware ProtocoL This section presents an IT protocol based
on the TTCB wormhole ^. This protocol illustrates the approach based on hy
brid failure assumptions: most of the system is assumed to fail in an arbitrary
way, while the wormhole is assumed to be secure, i.e, to fail only by crashing.
The system is also assumed to be asynchronous, except for the TTCB which is
synchronous.

The protocol is a reliable multicast, a classical problem in distributed sys
tems. Each execution of a multicast has one sender process and several recipient
processes. In the rest of the section, we will make the classical separation of
receiving a message from the network and delivering a message - the result of
the protocol execution.

A reliable multicast protocol enforces the following two properties [6]: (1) all
correct processes deliver the same messages; (2) if a correct sender transmits
a message then all correct processes deliver this message. These rules do not
imply any guarantees of delivery in case of a malicious sender. However, one of
two things will happen, either the correct processes never complete the protocol

The protocol is a simplified version of the protocol presented in [12].

32 Paulo Esteves Verissimo et al.

execution and no message is ever delivered, or if they terminate, then they will
all deliver the same message. No assumptions are made about the behaviour of
malicious (recipient) processes. They might decide to deliver the correct message,
a distinct message or no message.

The protocol -BRM (Byzantine Reliable Multicast)- is executed by a set
of distributed processes. The processes can fail arbitrarily, e.g., they can crash,
delay or not transmit some messages, generate messages inconsistent with the
protocol, or collude with other faulty processes with malicious intent. Their
communication can also be arbitrarily attacked: messages can be corrupted,
removed, introduced, and replayed.

Let us see the process failure modes in more detail. A process is correct
basically if it follows the protocol until the protocol terminates. Therefore, a
process is failed if it crashes or deviates from the protocol. There are some
additional situations in which we also consider the process to be failed. A process
has an identity before the TTCB which is associated to the shared key. If that
pair (id, key) is captured by an attacker, the process can be impersonated before
the TTCB, therefore it has to be considered failed.

Another situation in which we consider a process to be failed is when an
attacker manages to disrupt its communication with the other processes. Pro
tocols for asynchronous systems typically assume that messages are repeatedly
retransmitted and eventually received (reliable channels). In practice, usually a
service which is too delayed is useless. Therefore, BRM retransmits messages a
limited number of times and then we assume "isolated" processes to be failed.
In channels prone only to accidental faults it is usually considered that no more
than Od messages are corrupted/lost in a reference interval of time. Od is the
omission degree and tests can be made in concrete networks to determine Od
with the desired probability. For malicious faults, if a process does not receive a
message after Od + 1 retransmissions from the sender, with Od computed con
sidering only accidental faults, then it is reasonable to assume that either the
process crashed, or an attack is under way. In any case, we will consider the
receiver process as failed. The reader, however, should notice that Od is just a
parameter of the protocol. If Od is set to a very high value, then BRM will start
to behave like the protocols that assume reliable channels.

Formally, a reliable multicast protocol has the properties below [20]. The
predicate sender{M) gives the message field with the sender, and group{M)
gives the "group" of processes involved, i.e., the sender and the recipients (note
that we consider that the sender also delivers).

— Validity: If a correct process multicasts a message M, then some correct
process in group{M) eventually delivers M.

— Agreement: If a correct process delivers a message M, then all correct pro
cesses in group{M) eventually deliver M.

— Integrity: For any message M, every correct process p delivers M at most
once and only if p is in group{M), and if sender(M) is correct then M was
previously multicast by sender(M).

Intrusion-Tolerant Architectures: Concepts and Design 33

BRM-T Sender protocol
1 tstart = TTCB^getTimestampO + To;
2 M := (elist, tstart, data);
3 propose := TTCB.proposefelist, tstart, TTCB^TBA^RMULTICAST, H(M));
4 repeat Od+1 times do multicast M to elist except sender od
5 deliver M;

BRM-T Recipient protocol
6 read-blocking (M);
7 propose ;= TTCB-propose(M.elist, M.tstart, TTCB-TBA^RMULTICAST, ±);
8 do decide := TTCB-decide(propose.tag);
9 while (decide, error T^ TTCB.TBA.ENDED);
10 while (H(M) ^ decide.value) do readJ}locking(M) od
11 repeat Od+1 times do multicast M to elist except sender od
12 deliver M;

Fig. 9. BRM protocol

An implementation of BRM can be found in Figure 9. The sender securely
transmits a hash of the message {H{M)) to the recipients through the T T C B
Agreement Service and then multicasts the message Od + 1 t imes. This hash
code is used by the recipients to ensure the integrity and authentici ty of the
message. When they get a correct copy of the message they multicast it Od + 1
times. The pseudo-code is pret ty much straightforward so we do not describe it
with detail and refer the reader to [12].

TTCI

t

* - Corrupted message f
i - Delivery Omission Degree (Od) = 1 i

TTCB_propose(H(M))

"rrCB_decide(H(IM))

Fig. 10. Protocol execution

34 Paulo Esteves Verissimo et al.

Figure 10 illustrates the behavior of the protocol. The horizontal lines rep
resent the execution of processes through time. The thicker line represents the
TTCB as a whole, even though, each process calls a separate local TTCB in
its host (this representation is used for simplicity). The sender calls the TTCB
agreement and then multicasts the message twice {Od = 1) . These messages are
received in the following way: P2 receives the two copies of the message, P3 re
ceives the first copy corrupted and the second well, and P4 does not receive the
first copy and the second is delayed. The example assumes that the first message
sent to P3 is corrupted only in the data part, and for that reason it is still pos
sible to determine this protocol instance. When a message arrives, the recipient
calls the TTCB agreement to get the result with the reliable value of H{M).
Both processes P2 and P3 get this value almost immediately after the end of the
agreement. They use the hash to select which of the messages they received is
correct, and then they multicast the message to all the other recipients. P4 asks
for the result of the agreement later, when it receives the first message from the
protocol. Then, it multicasts the message.

9 Conclusion

We have presented an overview of the main concepts and design principles rele
vant to intrusion tolerant (IT) architectures. In our opinion. Intrusion Tolerance
as a body of knowledge is, and will continue to be for a while, the main catalyst of
the evolution of the area of dependability. The challenges put by looking at faults
under the perspective of "malicious intelligence" have brought to the agenda
hard issues such as uncertainty, adaptivity, incomplete knowledge, interference,
and so forth. Under this thrust, researchers have sought replies, sometimes un
der new names or slight nuances of dependability, such as trustworthiness or
survivability.

We believe that fault tolerance will witness an extraordinary evolution, which
will have applicability in all fields and not only security-related ones. We will
know that we got there when we will no longer talk about accidental faults,
attacks or intrusions, but just (and again)... faults.

Acknowledgements

Many of the concepts and design principles presented here derive both from
past experience with fault-tolerant and secure system architectures, and from
more recent work and challenging discussions within the European 1ST MAFTIA
project. We wish to warmly thank all members of the team, several of whom
contributed to IT concepts presented here, and collectively have represented a
fenomenal thinking tank.

Intrusion-Tolerant Architectures: Concepts and Design 35

References

1. Adelsbach, A., Alessandri, D., Cachin, C , Creese, S., Deswarte, Y., Kursawe,
K., Laprie, J.C., Powell, D., Randell, B., Riordan, J., Ryan, P., Simmonds, W.,
Stroud, R., Verissimo, P., Waidner, M., Wespi, A.: Conceptual Model and Archi
tecture of MAFTIA. Project MAPTIA IST-1999-11583 deliverable D21. (2002)
ht tp: / /www.research.ec.org/maft ia /del iverables/D21.pdf .

2. Alvisi, L., Malkhi, D., Pierce, E., Reiter, M.K., Wright, R.N.: Dynamic Byzan
tine quorum systems. In: Proceedings of the IEEE International Conference on
Dependable Systems and Networks. (2000) 283-292

3. Amir, Y., Kim, Y., Nita-Rotaru, C , Schultz, J., Stanton, J., Tsudik, G.: Exploring
robustness in group key agreement. In: Proceedings of the 21th IEEE International
Conference on Distributed Computing Systems. (2001) 399-408

4. Ateniese, G., Steiner, M., Tsudik, C : New multi-party authentication services and
key agreement protocols. IEEE J. of Selected Areas on Communications 18 (2000)

5. Avizienis, A., Laprie, J.C., Randell, B.: Fundamental concepts of dependability.
Technical Report 01145, LAAS-CNRS, Toulouse, Prance (2001)

6. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. Journal
of the ACM 32 (1985) 824-840

7. Cachin, C , Correia, M., McCutcheon, T., Neves, N., Pfitzmann, B., Ran
dell, B., Schunter, M., Simmonds, W., Stroud, R., Verissimo, P., Waid
ner, M., Welch, I.: Service and Protocol Architecture for the MAF
TIA Middleware. Project MAFTIA IST-1999-11583 deliverable D23. (2001)
h t t p : //www. research . ec . org/maf t i a /de l ive rab les /D23f i i i a l . pdf.

8. Cachin, C , Poritz, J.A.: Hydra: Secure replication on the internet. In: Proceedings
of the International Conference on Dependable Systems and Networks. (2002)

9. Canetti, R., Gennaro, R., Herzberg, A., Naor, D.: Proactive security: Long-term
protection against break-ins. RSA CryptoBytes 3 (1997) 1-8

10. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Proceedings of the
Third Symposium on Operating Systems Design and Implementation. (1999)

11. Connelly, K., Chien, A.A.: Breaking the barriers: High performance security for
high performance computing. In: Proc. New Security Paradigms Workshop. (2002)

12. Correia, M., Lung, L.C., Neves, N.F., Verissimo, P.: Efficient Byzantine-resihent
reliable multicast on a hybrid failure model. In: Proceedings of the 21st IEEE
Symposium on Reliable Distributed Systems. (2002) 2-11

13. Correia, M., Verissimo, P., Neves, N.F.: The design of a COTS real-time distributed
security kernel. In: Proceedings of the Fourth European Dependable Computing
Conference. (2002) 234-252

14. Cukier, M., Lyons, J., Pandey, P., Ramasamy, H.V., Sanders, W.H., Pal, P., Web
ber, F., Schantz, R., Loyall, J., Watro, R., Atighetchi, M., Gossett, J.: Intrusion
tolercince approaches in ITUA (fast abstract). In: Supplement of the 2001 Inter
national Conference on Dependable Systems and Networks. (2001) 64-65

15. Debar, H., Wespi, A.: Aggregation and correlation of intrusion detection alerts. In:
4th Workshop on Recent Advances in Intrusion Detection. Volume 2212 of Lecture
Notes in Computer Science. Springer-Verlag (2001) 85-103

16. Deswarte, Y., Blain, L., Fabre, J.C.: Intrusion tolerance in distributed computing
systems. In: Proceedings of the 1991 IEEE Symposium on Research in Security
and Privacy. (1991) 110-121

17. Dobson, J., Randell, B.: Building rehable secure computing systems out of unre
liable insecure components. In: Proceedings of the International Symposium on
Security and Privacy, IEEE (1986) 187-193

18. Dutertre, B., Crettaz, V., Stavridou, V.: Intrusion-tolerant Enclaves. In: Proceed
ings of the IEEE International Symposium on Security and Privacy. (2002)

36 Paulo Esteves Verfssimo et al.

19. Fraga, J.S., Powell, D.: A fault- and intrusion-tolerant file system. In: Proceedings
of the 3rd International Conference on Computer Security. (1985) 203-218

20. Hadzilacos, V., Toueg, S.: A modular approach to fault-tolerant broadcasts and
related problems. Technical Report TR94-1425, Cornell University, Department of
Computer Science (1994)

21. Hiltunen, M., Schlichting, R., Ugarte, C.A.: Enhancing survivability of security
services using redundancy. In: Proceedings of the IEEE International Conference
on Dependable Systems and Networks. (2001) 173-182

22. Kihlstrom, K.P., Moser, L.E., Melliar-Smith, P.M.: The SecureRing group commu
nication system. ACM Transactions on Information and System Security 4 (2001)
371-406

23. Knight, J., Heimbigner, D., Wolf, A., Carzaniga, A., Hill, J., Devanbu, P.: The Wil
low survivability architecture. In: Proceedings of the 4th Information Survivability
Workshop. (2001)

24. Malkhi, D., Reiter, M.K., Tulone, D., Ziskind, E.: Persistent objects in the Fleet
system. In: Proceedings of the 2nd DARPA Information Survivability Conference
and Exposition (DISCEX II). (2001)

25. Meyer, F., Pradhan, D.: Consensus with dual failure modes. In: Proc. of the 17th
IEEE International Symposium on Fault-Tolerant Computing. (1987) 214-222

26. Nicomette, V., Deswarte, Y.: An Authorization Scheme for Distributed Object
Systems. In: IEEE Symposium on Research in Privacy and Security. (1996) 31-40

27. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its ap
plication to secure message transmission. In: Proceedings of the IEEE Symposium
on Research in Security and Privacy. (2001) 184-200

28. Powell, D., Seaton, D., Bonn, G., Verissimo, P., Waeselynk, F.: The Delta-4 ap
proach to dependability in open distributed computing systems. In: Proceedings
of the 18th IEEE International Symposium on Fault-Tolerant Computing. (1988)

29. Powell, D., ed.: Delta-4: A Generic Architecture for Dependable Distributed Pro
cessing. Springer-Verlag (1991) Research Reports ESPRIT.

30. Powell, D.: Fault assumptions and assumption coverage. In: Proceedings of the
22nd IEEE International Symposium of Fault-Tolerant Computing. (1992)

31. Reiter, M.K.: The Rampart toolkit for building high-integrity services. In: Theory
and Practice in Distributed Systems. Volume 938 of Lecture Notes in Computer
Science. Springer-Verlag (1995) 99-110

32. Schneider, F.B.: The state machine approach: A tutorial. Technical Report TR86-
800, Cornell University, Computer Science Department (1986)

33. Verissimo, P., Rodrigues, L.: Distributed Systems for System Architects. Kluwer
Academic Publishers (2001)

34. Verissimo, P., Rodrigues, L., Casimiro, A.: Cesiumspray: A precise and accurate
global clock service for large-scale systems. Journal of Real-Time Systems 12
(1997) 243-294

35. Verissimo, P.: Uncertainty and predictability: Can they be reconciled? In: Future
Directions in Distributed Computing. Springer-Verlag LNCS 2584 (2003) -

36. Verissimo, P., Casimiro, A., Fetzer, C : The Timely Computing Base: Timely
actions in the presence of uncertain timeliness. In: Proceedings of the International
Conference on Dependable Systems and Networks. (2000) 533-542

37. Xu, J., Randell, B., Romanovsky, A., Rubira, C , Stroud, R.J., Wu, Z.: Fault
tolerance in concurrent object-oriented software through coordinated error recov
ery. In: Proceedings of the 25th IEEE International Symposium on Fault-Tolerant
Computing. (1995) 499-508

38. Zhou, L., Schneider, F., van Renesse, R.: COCA: A secure distributed on-line
certification authority. ACM Trans, on Computer Systems 20 (2002) 329-368

