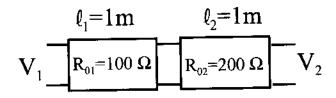

Prova scritta di elettronica delle telecomunicazioni - 1-2-2001

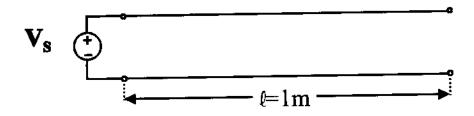
Es. A

Con riferimento all'amplificatore in figura, che utilizza un transistore bipolare 2N4957 in configurazione base comune(V_{CB} = -10 V, I_C = -2mA), alla frequenza f_0 =200 MHz,


V_S: valore massimo V_{SM}=1mV $R_S=50 \Omega$, $C_S=20 pF R_L=100 \Omega$

Si consideri: $g_{OB}=0.1$ $y_{RB}=0$

- 1) Progettare le reti di adattamento M1 e M2 in modo tale che l'impedenza di ingresso sia pari a
- 50 Ω e $G_T = G_A$; 2) Calcolare l'ampiezza della componente alternativa della corrente di emettitore;
- 3) Calcolare, su una banda di 1 MHz centrata su f₀, il contributo della potenza totale di rumore in uscita dovuta esclusivamente alla terminazione di ingresso.


Es. B

Calcolare, alla frequenza di 1 GHz, il parametro S_{11} normalizzato a 50 Ω del quadripolo mostrato in figura. Si consideri che per entrambe le linee $\epsilon_R = 1$, $\mu_R = 1$.

Es. C

Con riferimento alla linea di trasmissione in figura valutare la risposta al gradino di tensione unitario in una sezione di linea a distanza di 0.5 m dal generatore per un intervallo di tempo da 0 a 10 ns. Si consideri la linea priva di perdite e con velocità di fase=velocità della luce.

1

E. A3

I parametri y a box comme somo

YIB = 55 - 165 m S

YB = -53 + 175 m S

YB = 0.1 + 1.55 m S

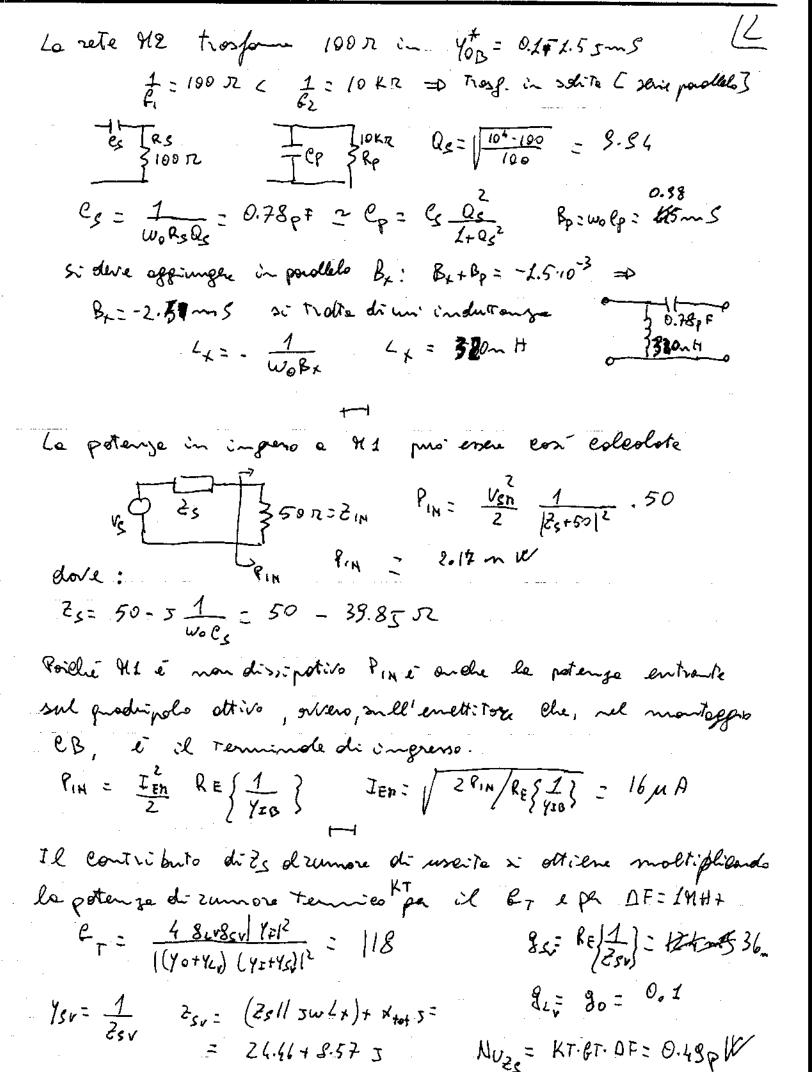
YB = 0

Poide il quadripolo è unilaterale [yas=0] nimble

Yen = Y13 = 55-155 m 5

Affinder inner: $G_T = G_A$ dere ence $P_{ABUT} = P_L$ over a necessario ele visia adoltamento compleno Consinpoto
in uscito. Pertento 42 dere trasforme $Y_{BUT} = Y_{OB}$ in $R_L^* = 100\pi$ Proglito di 41

G1: 1 = 18.18 12 < 502 tresformagione in solita


ZIB = ZIN = 16.3 + 4.65

 $e_{s} = \frac{33.6pt}{33.6pt}$ $t_{s} = \frac{1}{w_{0}e_{s}} = -23.7$ $t_{tot} = t_{s} = -28.35$ t_{tot} equivale a meandersotre $e_{tot} = \frac{t_{tot}}{w_{0}t_{tot}} = \frac{1}{w_{0}t_{tot}} = 28pt$

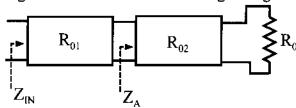
Cp = es Qs = 22.25 xp=-1=-35.72 bp=28-s

Sidere opginger in parollelo Lx: - 1 = 28.10-3 =DLx= 28n H

28mH 3 28pf / YIB

Ysv= 36 -125 mg

Esercizio B.


Il metodo più veloce per calcolare il parametro S_{11} fa riferimento alla formula del Γ_{IN} :

$$\Gamma_{\rm in} = S_{11} + \frac{S_{12}S_{21}\Gamma_L}{1 - S_{22}\Gamma_L}$$

Per Γ_L =0 si ha: Γ_{IN} = S_{11} . Pertanto basterà porre la resistenza di normalizzazione R_0 =50 Ω in uscita (imponendo quindi Γ_L =0) e valutare il Γ_{IN} . Per valutare il Γ_{IN} si calcola la Z_{IN} e poi si applica la formula:

$$\Gamma_{\rm IN} = \frac{Z_{\rm IN} - R_{\rm 0}}{Z_{\rm IN} + R_{\rm 0}}$$

Per calcolare la Z_{IN} si segue lo schema mostrato nella figura seguente.

Innanzitutto si calcolano le lunghezze in termini di frazioni di lunghezze d'onda. La lunghezza d'onda è pari a $\frac{v_f}{f}$ dove v_f è la velocità di fase e f la frequenza. Siccome ε_R e μ_R sono pari a 1, per qualsiasi geometria della linea la velocità di propagazione è pari alla velocità della luce nel vuoto, $c=3\times10^8$ m/s. Risulta $\lambda=0.3$ m, per cui le linee sono entrambe lunghe $\frac{10}{3}\lambda=3\lambda+\frac{\lambda}{3}$. Ai fini dell'impedenza contano solo le frazioni di λ , dato che 3λ corrispondono a 6 giri completi nella carta di Smith e quindi ad un effetto nullo sull'impedenza. Per cui per entrambe le linee si considera una lunghezza pari a $\frac{\lambda}{3}$.

Si calcola prima Z_A usando la carta di Smith (si veda la CdS allegata). Per fare ciò si parte dal punto corrispondente a R_0 nella CdS e si ruota di 0.333 λ in senso orario fino ad arrivare al punto A. In corrispondenza di tale punto si ricava l'impedenza normalizzata. Questa va denormalizzata ricordando che la linea ha impedenza caratteristica R_{02} =200 Ω . Per cui:

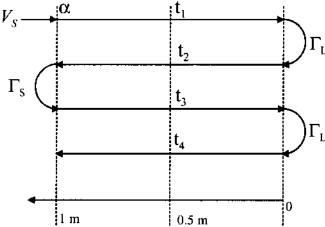
$$Z_A = R_{02}(0.85 - j1.43) = 170 - j286 \Omega$$

Per ottenere Z_{IN} bisogna trsformare questo valore attraverso la linea 1. Si normalizza quindi la Z_A all'impedenza caratteristica R_{01} =100 Ω e si ottiene:

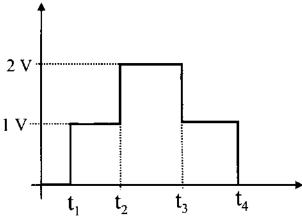
$$\frac{Z_A}{R_{01}} = 1.7 - j2.86 \ \Omega$$

corrispondente al punto B nella carta di Smith. Si ruota quindi di 0.333 λ e si giunge finalmente al punto corrispondente alla Z_{IN} . Si denormalizza l'impedenza e si ottiene:

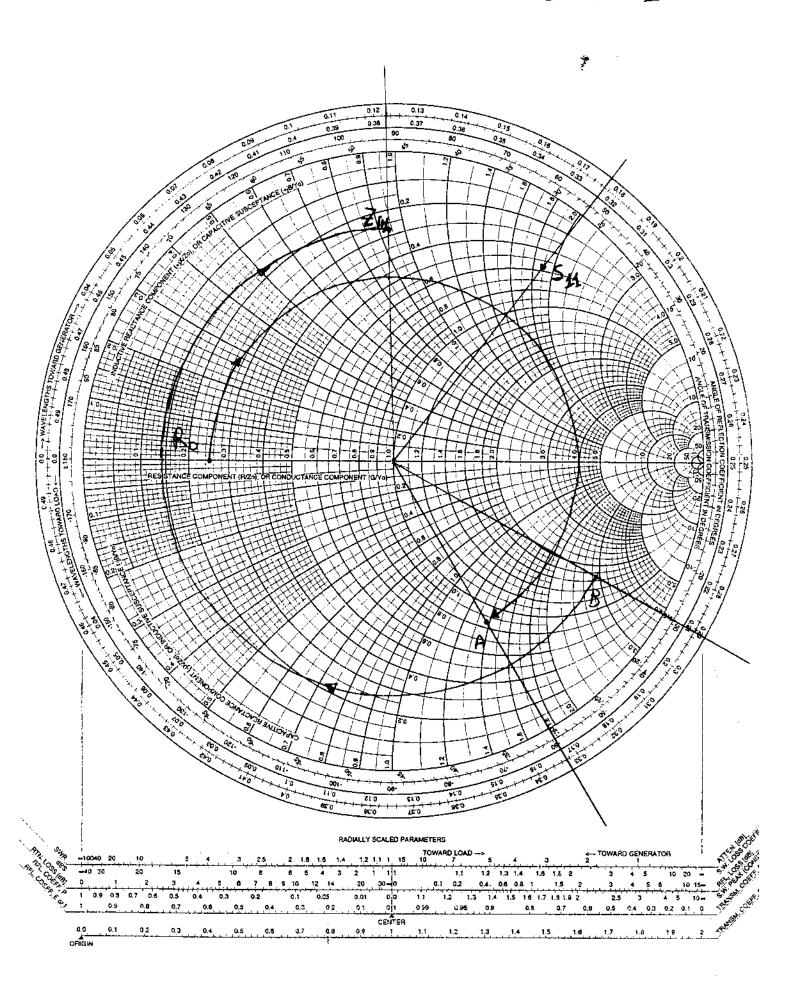
$$Z_{IN} = R_{01}(0.27 + j0.94) = 27 + j94 \Omega$$


Applicando la definizione di $\Gamma_{\rm IN}$ indicata all'inizio oppure utilizzando ancora la CdS (normalizzando la $Z_{\rm IN}$ a R_0 =50 Ω e giungendo nella CdS direttamente a S_{11}) si ottiene: $S_{11} \cong 0.78 \angle 53^\circ$. Ovviamente si può evitare l'uso delle CdS facendo ricorso alle formule che danno l'impedenza vista in una sezione di una linea.

Esercizio C.


Si calcolano inizialmente i seguenti parametri:

Per le espressioni precedenti si tenga presente che dalla figura del testo si evince che $Z_S=0$, $Z_L=\infty$, per cui non è necessario conoscere il valore di Z_0 . Si passa quindi al seguente schema riassuntivo che permette di valutare la corretta sovrapposizione dei segnali dovuti ai vari passaggi sulla sezione d'interesse, a 0.5 m dall'ingresso della linea.


I tempi t_1 , t_2 etc. etc. indicano i tempi dei vari passaggi dell'onda che, propagandosi avanti e indietro nella linea incontra la sezione di interesse. Valutando sul semplice schema gli spazi percorsi ed essendo nota la velocità di propagazione pari a c, la velocità della luce si ricava: $t_1=1.66$ ns, $t_2=5$ ns, $t_3=8.33$ ns, $t_4=11.66$ ns.

Pertanto, essendo il periodo di osservazione richiesto pari a 10 ns, basterà valutare solo i contributi dovuti ai primi tre passaggi. Siccome i tre parametri α , Γ_L e Γ_S sono numeri puri non si avrà

deformazione del segnale che in ciascun passaggio rimane un gradino con ritardi crescenti. Si ottiene il seguente andamento del segnale:

La transizione corrispondente all'istante t₄ è oltre l'intervallo di 10 ns quindi non era richiesta ed è stata riportata per maggior chiarezza.

