21 Febbraio 2018

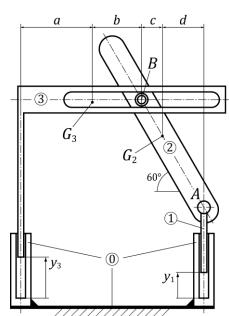
ESAME DI MECCANICA - solo PRIMA PARTE - Versione A

Corso di Laurea in Ingegneria Biomedica

Esercizio 1

Si consideri il meccanismo in figura, nella configurazione rappresentata. Sono note le quantità geometriche indicate. Il corpo 0 funge da telaio. Il punto B è il centro di un perno cilindrico solidale al corpo 2 e impegnato in un'asola ricavata nel corpo 3.

- 1. Effettuare l'analisi geometrica dei vincoli per stabilire il numero effettivo di gradi di libertà del meccanismo.
- 2. Si assumano note le due velocità \dot{y}_1 e \dot{y}_3 : nell'istante considerato, $\dot{y}_1 > 0$ e $\dot{y}_3 = 0$. Ottenere analiticamente le espressioni delle velocità incognite in funzione dei dati del problema e confermare la correttezza dei loro segni mediante soluzione grafica (triangolo delle velocità).
- 3. Determinare i centri delle velocità assoluti dei tre corpi mobili, assumendo ancora $\dot{y}_3=0$. Determinare inoltre il centro delle velocità relativo C_{23} .
- 4. Ottenere l'equazione di chiusura delle accelerazioni.

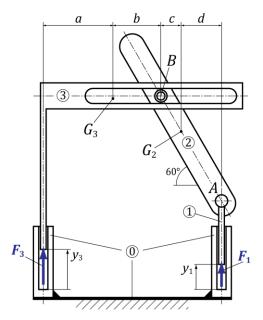


Esercizio 2

Si consideri lo stesso meccanismo dell'esercizio precedente. Sui corpi 2 e 3, aventi rispettivamente masse m_2 e m_3 e baricentri G_2 e G_3 , agiscono le rispettive forze peso.

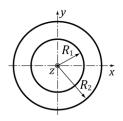
- 1. Effettuare l'analisi fisica dei vincoli per determinare il numero minimo di forze/coppie esterne che devono essere (opportunamente) applicate affinché il sistema sia globalmente isostatico.
- 2. Sono assegnate le rette di applicazione delle forze F_1 e F_3 mostrate in figura, applicate rispettivamente ai corpi 1 e 3 al fine di equilibrare staticamente il sistema sotto l'azione delle forze peso dei corpi 2 e 3. Applicando il principio di sovrapposizione degli effetti, determinare le forze F_1 e F_3 e tutte le forze/coppie reattive. Riportare i diagrammi di corpo libero risolti in funzione dei dati del problema.

Per il punto 2, indicare chiaramente *l'ordine* secondo cui vengono analizzati i corpi.



Esercizio 3

Ottenere per via analitica l'espressione del momento d'inerzia rispetto all'asse z del cerchio omogeneo forato rappresentato a lato.



21 Febbraio 2018

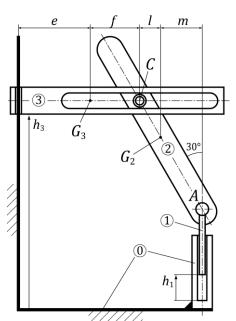
ESAME DI MECCANICA - solo PRIMA PARTE - Versione B

Corso di Laurea in Ingegneria Biomedica

Esercizio 1

Si consideri il meccanismo in figura, nella configurazione rappresentata. Sono note le quantità geometriche indicate. Il corpo 0 funge da telaio. Il punto C è il centro di un perno cilindrico solidale al corpo 2 e impegnato in un'asola ricavata nel corpo 3.

- 1. Effettuare l'analisi geometrica dei vincoli per stabilire il numero effettivo di gradi di libertà del meccanismo.
- 2. Si assumano note le due velocità \dot{h}_1 e \dot{h}_3 : nell'istante considerato, $\dot{h}_1 > 0$ e $\dot{h}_3 = 0$. Ottenere analiticamente le espressioni delle velocità incognite in funzione dei dati del problema e confermare la correttezza dei loro segni mediante soluzione grafica (triangolo delle velocità).
- 3. Determinare i centri delle velocità assoluti dei tre corpi mobili, assumendo ancora $\dot{h}_3=0$. Determinare inoltre il centro delle velocità relativo C_{23} .
- 4. Ottenere l'equazione di chiusura delle accelerazioni.

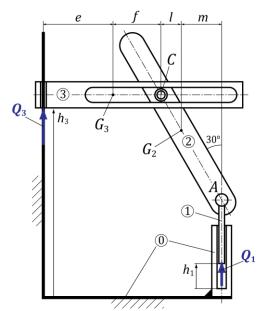


Esercizio 2

Si consideri lo stesso meccanismo dell'esercizio precedente. Sui corpi 2 e 3, aventi rispettivamente masse m_2 e m_3 e baricentri G_2 e G_3 , agiscono le rispettive forze peso.

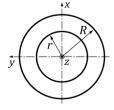
- Effettuare l'analisi fisica dei vincoli per determinare il numero minimo di forze/coppie esterne che devono essere (opportunamente) applicate affinché il sistema sia globalmente isostatico.
- 2. Sono assegnate le rette di applicazione delle forze \mathbf{Q}_1 e \mathbf{Q}_3 mostrate in figura, applicate rispettivamente ai corpi 1 e 3 al fine di equilibrare staticamente il sistema sotto l'azione delle forze peso dei corpi 2 e 3. Applicando il principio di sovrapposizione degli effetti, determinare le forze \mathbf{Q}_1 e \mathbf{Q}_3 e tutte le forze/coppie reattive. Riportare i diagrammi di corpo libero risolti in funzione dei dati del problema.

Per il punto 2, indicare chiaramente *l'ordine* secondo cui vengono analizzati i corpi.



Esercizio 3

Ottenere per via analitica l'espressione del momento d'inerzia rispetto all'asse z del cerchio omogeneo forato rappresentato a lato.



21 Febbraio 2018

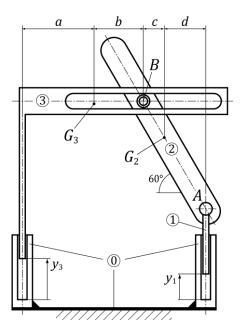
ESAME DI MECCANICA - PRIMA PARTE DI INTERO

Corso di Laurea in Ingegneria Biomedica

Esercizio 1

Si consideri il meccanismo in figura, nella configurazione rappresentata. Sono note le quantità geometriche indicate. Il corpo 0 funge da telaio. Il punto B è il centro di un perno cilindrico solidale al corpo 2 e impegnato in un'asola ricavata nel corpo 3.

- 1. Effettuare l'analisi geometrica dei vincoli per stabilire il numero effettivo di gradi di libertà del meccanismo.
- 2. Si assumano note le due velocità \dot{y}_1 e \dot{y}_3 : nell'istante considerato, $\dot{y}_1 > 0$ e $\dot{y}_3 = 0$. Ottenere analiticamente le espressioni delle velocità incognite in funzione dei dati del problema e confermare la correttezza dei loro segni mediante soluzione grafica (triangolo delle velocità).
- 3. Determinare i centri delle velocità assoluti dei tre corpi mobili, assumendo ancora $\dot{y}_3 = 0$.
- 4. Ottenere l'equazione di chiusura delle accelerazioni.

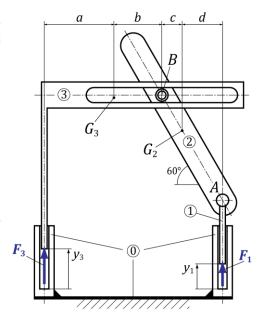


Esercizio 2

Si consideri lo stesso meccanismo dell'esercizio precedente. Sui corpi 2 e 3, aventi rispettivamente masse m_2 e m_3 e baricentri G_2 e G_3 , agiscono le rispettive forze peso.

- 1. Effettuare l'analisi fisica dei vincoli per determinare il numero minimo di forze/coppie esterne che devono essere (opportunamente) applicate affinché il sistema sia globalmente isostatico.
- 2. Sono assegnate le rette di applicazione delle forze F_1 e F_3 mostrate in figura, applicate rispettivamente ai corpi 1 e 3 al fine di equilibrare staticamente il sistema sotto l'azione delle forze peso dei corpi 2 e 3. Applicando il principio di sovrapposizione degli effetti, determinare le forze F_1 e F_3 e tutte le forze/coppie reattive. Riportare i diagrammi di corpo libero risolti in funzione dei dati del problema.

Per il punto 2, indicare chiaramente *l'ordine* secondo cui vengono analizzati i corpi.



2 coppie prismatiche
$$x(-2g.d.e) = -4 g.d.e.$$

1 cerniera
$$x \left(-2g.d.l.\right) = -2g.d.l.$$

1 perno cil. in a sda
$$x \left(-1 \text{ g.d.l.}\right) = -1 \text{ g.d.l.}$$

È immediato verificare che i vinedi sono indipendenti (basha bloccare y, e y, ovvero i corpi 1 e 3): il meccanismo ha quindi due g.d.l. effettivi. E per dimostrare che il meccanismo non può muoversi

2)
$$\Sigma_{BE2} = \Sigma_{AE2} + \dot{\theta}_2 \, \underline{k} \times \overrightarrow{AB}$$
 (θ_2 angels arishub positivo se antiorario) $= \dot{y}_1 \, \underline{J} + \dot{\theta}_2 \, \underline{k} \times \overrightarrow{AB}$

$$\Sigma(3): \ \underline{\nabla}_{BEL} = \ \underline{\nabla}_{BEL}^{(r)} + \ \underline{\nabla}_{BEL}^{(r)} = \ \dot{d}\underline{i} + \dot{\gamma}_3 \,\underline{J} \quad con: -$$

Uguagliando le due expressioni di 18E2 e sapendo y3 = 0: (coord relativa)

$$\dot{y}_{1}\underline{J} + \dot{\theta}_{2}\underline{k} \times \overrightarrow{AB} = \dot{d}\underline{i}$$
 (incognite: $\dot{\theta}_{2}$ e \dot{d})

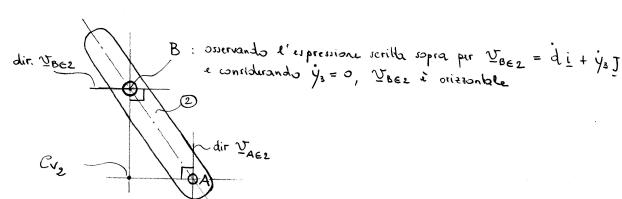
Solutione analytica, con
$$\overrightarrow{AB} = (-(c+d), (c+d)\tan 60^\circ, o)$$
:

•
$$\dot{\theta}_2 = \frac{\dot{y}_1}{c + d}$$
; $\dot{d} = -\sqrt{3} \dot{y}_1$

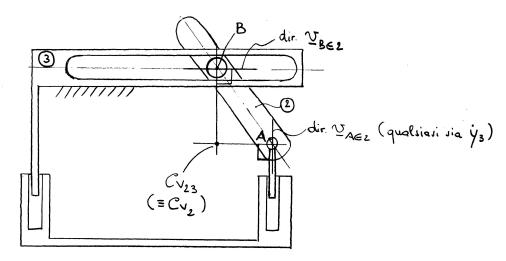
Verifica segni mediante triangolo delle velocità:

3)
$$Cv_1$$
 non esiste (mob traslatorio rettilino) Cv_3 non esiste (" " ")

Cv2 :



 $\mathcal{C}_{V_{23}}$:



4) Si procede in modo dul tullo analogo a quanto fallo per le velocità:

$$\sum (3) : \quad \alpha_{BEZ} = \alpha_{BEZ}^{(r)} + \alpha_{BEZ}^{(tr)} + \alpha_{BEZ}^{(Co)} = \alpha_{\underline{i}} + \gamma_{3} \underline{J} + \underline{O} (\text{endo } \underline{\omega}^{(tr)} = \dot{O}_{3} \underline{k} = \underline{O})$$

Uguagliando:

$$[(\ddot{y}_1 - \ddot{y}_3)_{\underline{J}} + \ddot{\theta}_2 & \times \overrightarrow{AB} - \dot{\theta}_2^2 \overrightarrow{AB} = \dot{d}_{\underline{i}}]$$

$$= \underbrace{q^{n}}_{\underline{i}} d_{\underline{i}} \text{ chiusura}$$

$$(\text{in cognite} : \ddot{\theta}_2 = \dot{d}_{\underline{i}})$$

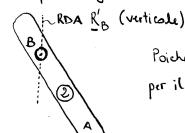
- ESERCIZIO 2 -

- 1) 3 corpi rigidi 9 eq. ardinali scalari (nel piano)
 - 2 coppie prism. 4 reazioni realari incognite
 - 1 cerniera 2 " " "
 - 1 perno eilindrico ___ 1 u u u u (liscio) in arola

9 eq.ºº in 7 reazioni scalari incognite: per ottenere un sistema isostatico è necessario applicare almeno due forze/coppie esterne su corpi distinti, qual le forze \(F_1 \) e \(F_3 \), da annoverare tra le incognite del problema (2 incognite scalari, una volta assegnate le loro RDA)

2) Agisce la sola forza pero del corpo 3, oltre alle forze esterne F' e F'3

Sul agrand du sol porse:

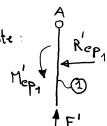


Poiché R's e R' non possono ostituire una coppia a braccio nullo, per il rispetto delle equi cardinali dure valere

$$\underline{R}'_A = \underline{R}'_B = \underline{Q} \rightarrow \text{corpo 2 non sollicito.to}$$

p. 6 di applicatione della R'A

Albra la situazione su 1 è la seguente:

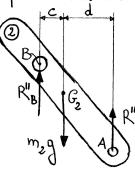


$$R'eP_1 = 0$$
 $F_1' = 0$
 $Corpo 1 non$
 $Corpo 1 non$
 $Corpo 1 non$

$$R'_{cp_3} = 0$$
 $F'_{3} = m_3 g$
 $M'_{cp_3} = m_3 g a$

Agisce la sola forza peso del corpo 2, oltre alle forze esterne \mathbf{F}_1'' e \mathbf{F}_3''

Il corpo 2 à isostatico:



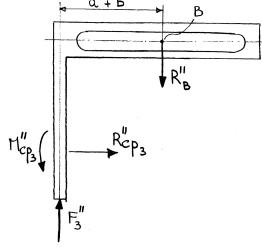
$$R_A'' + R_B'' = m_2 g$$

$$A) m_2 g d = R_B'' (c+d) \longrightarrow R_B'' = \frac{d}{c+d} m_2 g$$

$$Sostituendo nella prima:$$

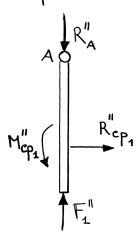
$$R_A'' = m_2 g - R_B'' = \frac{c}{c+d} m_2 g$$

E indifférente passare a 1 0 3. Sægliendo 3:



$$R_{cp_3}^{"} = 0$$
 $F_3^{"} = R_B^{"} = \frac{d}{c+d} m_2 g$
 $M_{cp_3}^{"} = R_B^{"} (a+b) = \frac{d(a+b)}{c+d} m_2 g$

Infine il corpo 1:

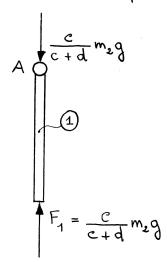


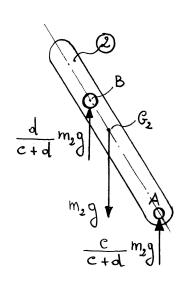
$$R_{cp_1}^{"} = 0$$

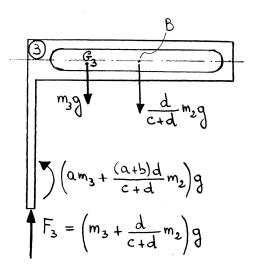
$$F_1^{"} = R_A^{"} = \frac{c}{c+d} m_2 q$$

$$M_{cp_1}^{"} = 0$$

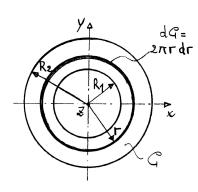
DCL risolti (completi):







- Esercizio 3 -



Momento d'inerzia rispetto all'asse z:

$$J_{z} = \rho \int (x^{2} + y^{2}) dG$$
Passando a cood. polari:
$$J_{z} = \rho \int_{R_{1}}^{R_{2}} r^{2} 2\pi r dr = \rho \frac{\pi}{2} \left(R_{1}^{4} - R_{1}^{4}\right)$$

La massa del cerchio forab è pari a :

$$m = \rho \pi (R_2^2 - R_1^2)$$

Dungue:

•
$$J_{z} = \int \frac{\pi}{2} (R_{2}^{4} - R_{1}^{4}) = \int \frac{\pi}{2} (R_{2}^{2} - R_{1}^{2}) (R_{2}^{2} + R_{1}^{2}) = \frac{1}{2} m (R_{2}^{2} + R_{1}^{2})$$