
A. Bechini
Course: Java

Sp
ec

ia
l t

ha
nk

s t
o

A
. V

ec
ch

io
 fo

r
th

e
pr

ev
io

us
 v

er
si

on
 o

f t
he

se
 sl

id
es

1

In
tr

od
uc

in
g

Ja
va Introduction

to Multithreading in Java

- Alessio Bechini -

In
tr

od
uc

in
g

Ja
va

2

Multitasking and Multithreading

Operating System (PCB Manager)

Runtime Support Library
for Threads (TCB manager)

PCB

T
hread

PCB
TCB TCB TCB

T
hread

T
hread

T
hread

Single
Thread

Multiple
Threads

A. Bechini
Course: Java

Sp
ec

ia
l t

ha
nk

s t
o

A
. V

ec
ch

io
 fo

r
th

e
pr

ev
io

us
 v

er
si

on
 o

f t
he

se
 sl

id
es

2

In
tr

od
uc

in
g

Ja
va

3

Why Are Threads Useful in Java?

• To easily implement algorithms
that are intrinsically parallel

• In GUIs, to handle the graphical display
on multiple windows

• To enhance the program performances
in multiprocessor platforms

• To handle asynchronous actions/tasks
required by the program

In
tr

od
uc

in
g

Ja
va

4

Use of Asynchronous Actions

• Non-blocking I/O
• Management of timed alarms, timers, etc.
• Tasks to be carried out

in an actual concurrent fashion
• Management of multiple service requests

with unpredictable arrival time

A. Bechini
Course: Java

Sp
ec

ia
l t

ha
nk

s t
o

A
. V

ec
ch

io
 fo

r
th

e
pr

ev
io

us
 v

er
si

on
 o

f t
he

se
 sl

id
es

3

In
tr

od
uc

in
g

Ja
va

5

Thread Usage: Example (I)

public class MyProg {

public static void main() {

Hello h = new Hello();

h.run();

<show MPEG>

}

}

class Hello {

public void run() {

for(int i=0; i<1000; i++)

System.out.println(“Hello”);

}

}

public class MyProg {

public static void main() {

Hello h = new Hello();

h.start();

<show MPEG>

}

}

class Hello extends Thread {

public void run() {

for(int i=0; i<1000; i++)

System.out.println(“Hello”);

}

}

Sequential case Concurrent case
In

tr
od

uc
in

g
Ja

va

6

Thread Usage: Example (II)

Sequential
Case

Concurrent
Case

<MPEG>

h.run()

main()

time

<MPEG>

h.run()

main()

time

A. Bechini
Course: Java

Sp
ec

ia
l t

ha
nk

s t
o

A
. V

ec
ch

io
 fo

r
th

e
pr

ev
io

us
 v

er
si

on
 o

f t
he

se
 sl

id
es

4

In
tr

od
uc

in
g

Ja
va

7

Threads by Inheritance/Interfaces

• The most straightforward way
to create a thread
is to build it in a sub-class of
java.lang.Thread

• Single inheritance prevents this class
from reusing code from other classes
through a derivation relationship:
the thread code cannot fully exploit
the advantages of inheritance.

• A possible solution
is the creation of threads
by classes that implement
a particular interface:
java.lang.Runnable

Thread
by means of:

Inherita
nce

Interface

In
tr

od
uc

in
g

Ja
va

8

Thread by Interface: Example

public class MyProg {

public static void main() {

Runnable runTarget = new Hello();

Thread helloThread = new Thread(runTarget);

helloThread.start();

<mostra MPEG>

}

}

class Hello implements Runnable {

public void run() {

for(int i=0; i<1000; i++)

System.out.println(“Hello”);

}

}

Notice that it is used
a particular constructor

which takes a “Runnable” target
as parameter

Target Object of class Hello

A. Bechini
Course: Java

Sp
ec

ia
l t

ha
nk

s t
o

A
. V

ec
ch

io
 fo

r
th

e
pr

ev
io

us
 v

er
si

on
 o

f t
he

se
 sl

id
es

5

In
tr

od
uc

in
g

Ja
va

9

Some Methods of Class Thread

• currentThread() returns
the currently running thread (static method)

• join() waits for the termination of the thread
it is invoked on
(e.g., t.join() waits for the termination of t)

• join(timeout) a timed variant of the previous one
• isAlive() returns true on a thread, in the time

interval between its start() and its termination
• suspend() and resume() are used

to temporary halt and wake up a thread

In
tr

od
uc

in
g

Ja
va

10

Control over Shared Resources

• Two or more concurrent threads may try to use
the same resource at a time.
This contemporary use may be harmful.
Thus, thread collision over a shared resource
must be usually prevented.

• A neat solution to this “collision problem”
is the following:

• The first thread that accesses a resource locks it,
and then the other threads cannot access that
resource until it is unlocked, at which time
another thread locks and uses it, etc.

A. Bechini
Course: Java

Sp
ec

ia
l t

ha
nk

s t
o

A
. V

ec
ch

io
 fo

r
th

e
pr

ev
io

us
 v

er
si

on
 o

f t
he

se
 sl

id
es

6

In
tr

od
uc

in
g

Ja
va

11

Synchronization among Threads

• The basic mechanism
for thread synchronization
is provided by the construct
synchronized

• The employment of synchronized
on a class method,
an instance method
or a code block
assures its execution
in mutual exclusion

• The synchronization
relies on the use of
particular data structures
known as “locks”

In
tr

od
uc

in
g

Ja
va

12

Object Lock and Lock Scope

• A lock is (implicitly) associated to every Java object
• A lock is (implicitly) associated to every Java class
• The synchronized keyword is aimed at

grabbing the lock of the object passed as argument
(either explicitly or implicitly).
In case the lock isn’t currently available
(i.e. it has been already acquired),
the executing thread blocks
until it is allowed to grab the lock

• The “lock scope” is the time interval (or code portion)
a thread holds a lock

A. Bechini
Course: Java

Sp
ec

ia
l t

ha
nk

s t
o

A
. V

ec
ch

io
 fo

r
th

e
pr

ev
io

us
 v

er
si

on
 o

f t
he

se
 sl

id
es

7

In
tr

od
uc

in
g

Ja
va

13

Critical Sections

• A code portion which must be run
by one thread at a time is called a critical section.

• Java supports critical sections
that do not correspond to methods by the
synchronized block; the keyword synchronized
is used to specify the object whose lock
is being used to synchronize the enclosed code:

synchronized(syncObject) {
// This code can be accessed
// by only one thread at a time

}

In
tr

od
uc

in
g

Ja
va

14

Deadlock Situations

BE CAREFUL!
The incautious use

of locks
may lead

to deadlock situations!

L1

L2

T1 T2

Request
for L2

Request
for L1

Deadlock

A. Bechini
Course: Java

Sp
ec

ia
l t

ha
nk

s t
o

A
. V

ec
ch

io
 fo

r
th

e
pr

ev
io

us
 v

er
si

on
 o

f t
he

se
 sl

id
es

8

In
tr

od
uc

in
g

Ja
va

15

Wait and Restart
in Synchronized Blocks

• Inside a synchronized portion of code,
a thread can block itself on a lock
by invoking the primitive wait()

• A thread which is blocked on a wait()
can be restarted by another thread
by executing the primitives
notify() / notifyAll() on the same lock

• The use of these primitives
is quite dangerous:
pay particular attention
in implementing interaction schemes
among threads!

