
A. Bechini
Course: Java

Sp
ec

ia
l t

ha
nk

s t
o 

A
. V

ec
ch

io
 fo

r 
th

e 
pr

ev
io

us
 v

er
sio

n 
of

 th
es

e 
sli

de
s

1

In
tr

od
uc

in
g 

Ja
va

Abstract Classes, Interfaces and 
Enhancement of Polymorphism

In
tr

od
uc

in
g 

Ja
va

Abstract Classes

Designing a hierarchy, it’s current (and proper) practice 
placing in the super-classes all the common methods 
and data structures required by subclasses.

Sometimes a super-class is aimed only at acting 
as a “common model” for the sub-classes, 
and no reason exists to actually instantiate it. 
In this case, it may be declared as “abstract.”

public abstract class Shape {

...

}

Abstract classes 
CANNOT 

be instantiated

In
tr

od
uc

in
g 

Ja
va

Abstract Classes

You create an abstract class when you want to 
manipulate a set of classes through this common 
interface

In
tr

od
uc

in
g 

Ja
va

Abstract Classes

• Abstract classes can contain 
whatever an “ordinary” class can: 
instance and class variables, instance and class 
methods, with whatever modifiers

• Moreover, abstract classes can contain 
abstract methods

• An abstract method is given the signature only. 
An abstract method is not equipped with a body, 
i.e. no implementation is given for it.

• The implementation of the body of an abstract method 
is provided in sub-classes of the abstract class.

In
tr

od
uc

in
g 

Ja
va

Abstract Classes

A method can be declared abstract iff
it is contained in an abstract class.

Abstract methods “roughly” describe within a super-class 
behaviors that are exhibited by sub-classes. 
Each subclass is in charge of providing 
the correct specific implementation for such behaviors

public abstract class Shape {
protected double x,y;
public void whatPlace() {
System.out.println(“My position: “+x+”,”+y);

}
public abstract double area(); 

} 

Sub-classes of Shape
inherit the concrete 
method whatPlace() 
and variables x and y

They MUST implement 
the method area() as 
well

In
tr

od
uc

in
g 

Ja
va

Abstract Classes

Classes Circle and Square are sub-classes of Shape;
Thus, they inherit variables x and y, 
and method whatPlace() as well.

Moreover, they implement method area() 
declared as abstract in class Shape

class Circle extends Shape {
protected double radius;
public Circle(double r){
radius=r;

}
public double area() {
return(radius*radius*3.1415);

}
}

class Square extends Shape{
protected double edge;
public Square(double e){
edge=l;

}
public double area() {
return(edge*egde);

}
}



A. Bechini
Course: Java

Sp
ec

ia
l t

ha
nk

s t
o 

A
. V

ec
ch

io
 fo

r 
th

e 
pr

ev
io

us
 v

er
sio

n 
of

 th
es

e 
sli

de
s

2

In
tr

od
uc

in
g 

Ja
va

Abstract Classes

Here, a two-element array 
is created, and it is assigned 
two objects: 
one of type Circle
and the other of type Square

The methods whatPlace() 
and area() are invoked 
on the array elements: 
the former is inherited 
from class Shape, where it has 
been implemented; 
the latter has been declared 
abstract

...

Shape[] shp=new Shape[2];

shp[0]=new Circle(1.0);

shp[1]=new Square(2.0);

for(int i=0; i< shp.length; i++) {

System.out.println(“Area: “

+ shp[i].area());

shp[i].whatPlace();

}

...

In
tr

od
uc

in
g 

Ja
va

The Diamond Problem

Class1Lev1

ClassLev0

ClassLev2

Class2Lev1

In
tr

od
uc

in
g 

Ja
va

Interfaces

In Java (differently by other OO languages such as C++) multiple
inheritance among classes is not allowed. Whenever multiple 
inheritance is present, a single class may “extend” multiple 
super-classes.

In Java a single class can extend just one single super-class.
This feature makes the language easier to learn and to implement.
One of the drawbacks of this approach is the following:

it’s not possible to specify that classes on separate sub-trees 
share some behaviors.

E.g., the two classes Car and Factory may share the behavior of 
PollutingObject characterized by the methods 
emissionOfPollutingGases (), etc.

In
tr

od
uc

in
g 

Ja
va

Interfaces

Java provides a solution to this issue 
by means of the introduction of interfaces

An interface is a collection of method definitions 
with no implementation; 
no instance variable is present within an interface

An interface can be associated to whatever class, 
in order to provide it with a behavior 
which is possibly not inherited by a super-class

Interfaces are not integral part 
of the ordinary class hierarchy.

In
tr

od
uc

in
g 

Ja
va

Interfaces

An interface definition is carried out according to the same rules 
used for classes: it must be placed in a file named as the 
interface itself, and with the extension .java; 
once it gets compiled, it is contained in a .class file.

The keyword interface is used to create a new interface

package geometry;

public interface Measurable {
public static final double PI=3.1415;
public abstract double area();
double perimeter();

}

Interfaces may be placed 
in a package

As for classes, 
interfaces must have 
a “public” or “package” 
protection level.

In
tr

od
uc

in
g 

Ja
va

Interfaces

Methods can be declared 
as public and abstract

They cannot be 
neither protected nor private

If no modifier is provided 
(as in perimeter()), 
a member assumes 
the same visibility as the 
class (in this case, public)

The defined variable must be public, static, final

In case no modifier is specified, 
the same rules as for methods apply.

package geometry;

public interface Measurable {
public static final double PI=3.1415;
public abstract double area();
double perimeter();

}



A. Bechini
Course: Java

Sp
ec

ia
l t

ha
nk

s t
o 

A
. V

ec
ch

io
 fo

r 
th

e 
pr

ev
io

us
 v

er
sio

n 
of

 th
es

e 
sli

de
s

3

In
tr

od
uc

in
g 

Ja
va

Interfaces

An interface can be defined to be an extension of another 
by using the keyword extends:

public interface InterfaceB extends InterfaceA {
…

Interface hierarchy, differently from the class hierarchy, 
has no root (neither explicit nor implicit; 
no counterpart of the java.lang.Object exists).

Multiple inheritance is used in the interface hierarchy
public interface InterfaceX extends InterfaceA, InterfaceB {

…

InterfaceX contains all the method/variable definitions 
and constants that are present both in InterfaceA and in 
InterfaceB

In
tr

od
uc

in
g 

Ja
va

Interfaces: the keyword implements

Because of the use of the keyword implements, a class is in charge 
of implementing all the methods defined in the interface.

class Square implements Measurable{
protected double edge;
public Square(double e){
edge=e;

}
public double area() {
return(edge*edge);

}
public double perimeter() {
return(edge*4);

}
}

Sub-classes of a class that 
implements a given interface, 
inherit the methods in the 
implemented interface.

package geometry;

public interface Measurable {
public static final double PI=3.1415;
public abstract double area();
double perimeter();

}

In
tr

od
uc

in
g 

Ja
va

Interfaces

A class can implement more than one interface.
class Apple extends Fruit implements Peelable, Eatable, Sellable, 

…

• If two implemented interfaces have the same method with the 
same signature, a single implementation for both has to be 
specified.

• If the two methods have the same name and different 
signatures, both of them have to be implemented.

• If the two methods have the same name, the same signature 
but different types are returned, an error occurs.

In
tr

od
uc

in
g 

Ja
va

Interfaces

It’s possible to declare a variable whose type is an interface. 
Such a reference variable can be assigned object 
of classes that implement such an interface.

Measurable mea=new Square(2.0)
As mea is an object of type Measurable, it is possible 

to invoke over it the two methods perimeter() and area()

Interfaces can be used to group a number of constants 
to be imported into several different classes

public interface Constants {
double PI=3.1415, sqrtTwo=1.4142, …

}

In
tr

od
uc

in
g 

Ja
va

Interfaces: More Polymorphism is Added

The fact that it’s possible to declare a variable whose type 
is an interface, gives us much more flexibility 
in using polymorphic behaviors.

A certain method a() in an interface X can be invoked 
over all the objects whose classes implements X, 
REGARDLESS of the placement of the classes 
in the class hierarchy.

In this context, it is common to deal with arrays 
(or more complex data structures of this kind) 
with elements of type “interface”

In
tr

od
uc

in
g 

Ja
va

Interfaces: What about Cast?

• What about cast among interfaces?
• What about cast among interfaces and classes?
• What about cast among interfaces and abstract 

classes?

Let’s make some experiments!



A. Bechini
Course: Java

Sp
ec

ia
l t

ha
nk

s t
o 

A
. V

ec
ch

io
 fo

r 
th

e 
pr

ev
io

us
 v

er
sio

n 
of

 th
es

e 
sli

de
s

4

In
tr

od
uc

in
g 

Ja
va

Exercise

• Create the class Rodent and the two classes Mouse and Beaver, 
making possibly used of an abstract class

• Create class Cage, containing three object of type Rodent
• Cage must implement the interface java.util.Enumeration 

(present in the core APIs) which is made of two methods:

− Object nextElement() Returns an element
− boolean hasMoreElements() Returns true if 

there are more elements to be enumerated
Each element can be returned just once.
Print the attributes of the three Rodent objects within an instance 

of Cage


