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Object-Oriented Programming: 
Basic Ideas

2

Object-Oriented 
Programming

Object Oriented Programming (OOP) 
is a programming paradigm that is inspired 

to the way Man creates models 
for the comprehension of the real world.
The OOP adopt a number of mechanisms 

to control and to manage 
the complexity of a software project

Such a goal is pursued 
applying rules aimed at:

abstracting  - generalizing  - classifying



A. Bechini
Course: Java

Sp
ec

ia
l t

ha
nk

s t
o 

A
. V

ec
ch

io
 fo

r 
th

e 
pr

ev
io

us
 v

er
si

on
 o

f t
he

se
 sl

id
es

2

3

Basic Characteristics (I)

• Encapsulation: ability to tell apart 
the internal state (and behavior)
fron the external state and behavior) 
of an object
– Data hiding: ability to hide details 

on the internal state of an object 
– Type Extendibility : ability to add 

user-defined types 
to the native types of the language
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Basic Characteristics (II)

• Inheritance: ability to create new types 
by importing/reusing 
the description of existing types

• Polymorphism: ability to call 
the same functionality 
(possibly requiring different implementations 
depending on the use context) 
by means of a unique identifier. 
The proper implementation to use may be chosen 
either during the compilation phase or at runtime.
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Encapsulation and Classes

• The first important attempt 
to make use of encapsulation 
in a programming language has been done 
with the “ADT” concept (Abstract Data Type)

• The concept of “class” is a generalization 
of ADT, and it turns out to be more flexible.

• A class entity in Java can be created 
using the construct “class”

• A class entity in C++ can be created 
using the constructs “struct”, “union”, “class”
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Inheritance (I)

• Inheritance is a kind of relation 
that allow to organize classes 
within a program.

• Analyzing a new object to insert 
in a program we must cope with 
the following questions:
– What are the similarities with the 

other objects?
– And what about the differences?
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Inheritance (II)

• Classes can be organized according to 
a hierarchical model, containing 
different levels.

• The higher the level, 
the more generic the class; 
Each level contains more specific 
classes than the previous one.

• Inheritance, in OOP, 
is basically an abstraction mechanism. 
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Class Diagrams (I)
Many different graphicnotations 

are used in the literature: 
now we use a specific one, inspired to 

UML (Unified Modelling Language)

MyClass

- myPrivateVar: int=7
+ myPublicVar: double

+ myPublicMethod(): int
# myProtectedMethod(): void

Class Name

Attributes

Methods

MyClass

+ myPublicMethod()
# myProtectedMethod()

MyClass
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Class Diagrams (II)

In UML, different kinds of relations 
among classes are taken into account:

• Derivation (Gen.-Spec.): in case a class 
is a direct subclass (“child”) of a base class 
(“parent”)

• Composition (aggregation, use): in case a class 
holds (refers), among its members, an instance(s) 
of another class.
– exclusive (aggregation, part-of)
– possibly shared (acquaintance)

• Association: semantic link among classes, 
characterized by a name, the roles of the involved 
classes, etc.
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Class Diagrams (III)

ShapeCreator

Figure

Color

Shape

LineShape

Representation of different kinds 
of relations among classes

Upon the reference arrow, 
it can be usually specified the corresponding field
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Simple and Multiple 
Inheritance

• The organization of classes 
due to the inheritance relation 
is a partial order

• Two different kind of inheritance 
are used: simple and multiple

Class1Lev0

Class1Lev1 Class2Lev1

Class1Lev2 Class2Lev2

Class1Lev0

Class1Lev1

Class1Lev2 Class2Lev2

Class2Lev0
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The Overriding Mechanism

• In case the implementation of an inherited method 
had to be modified, 
a new method declaration (and definition) 
can be placed in the derived class, 
keeping both the name and the signature. 

• The described operation is known as 
“overriding.”

• As an “overridden” method is invoked, 
the executed version of the method 
depends on the actual type of the class instance 
used for the invocation.



A. Bechini
Course: Java

Sp
ec

ia
l t

ha
nk

s t
o 

A
. V

ec
ch

io
 fo

r 
th

e 
pr

ev
io

us
 v

er
si

on
 o

f t
he

se
 sl

id
es

7

13

Object Diagrams

An object diagram
shows only class instances, 

and it provides a view of (a portion of) 
the program state (in terms of objects) 

at a given moment in its execution.

ACertainFigure

shape[0]
shape[1]

ALineShape

ACircleShape
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Polymorphism

• In the assortment of programming languages, 
a number of mechanisms are present 
that show particular behaviors called 
“polymorphic” 
(I.e. same ID, multiple functionality).

• Also some OO languages make use of 
polymorphic mechanisms 
in order to enhance programming flexibility.

• OO languages, because of the adopted 
hierarchical organization of the classes, 
typically provide specific kinds of polymorphism 
that leverage the derivation relation.
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Different Kinds of 
Polymorphism

• Ad hoc Polymorphism
– coercion: a function/method/operator acts upon values 

of different types by converting them into the expected 
type

– overloading: A specific function/method is called 
by taking into account its signature too

• Pure Polymorphism
– parametric polymorphism: the type is left unspecified 

by the programmer, and it will be automatically 
instantiated later (at compilation time)

– inclusion: Functions in the base type keep on working 
in the sub-type too. Thus the same function may have 
many different implementations, and the proper one 
(at a certain execution point) is chosen at runtime, 
by the identification of the actual sub-type.
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Strategies for Class Reuse 
(I)

• White-box reuse (reuse by inheritance)
– pros: 

• It’s simple to modify part of the implementation 
(by overriding)

• It’ defined statically, at compilation time
– cons: 

• “linheritance breaks encapsulation”,
I.e. derived classes usually can (must) access 
the internals of the base class:

• If something is changed within the base class, 
often this operation yields mandatory 
modifications in the derived class

• The hierarchical relation hampers flexibility: 
the use of abstract classes is recommended
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Strategies for Class Reuse 
(II)

• Black-box reuse (reuse by composition)
– pros:

• Encapsulation is not broken (objects are accessed 
only by their interface)

• Few dependencies by the implementation, as the 
implementation of an object is done in terms of 
interfaces of other objects

• It can be done at runtime
– cons:

• Interfaces must be strictly respected, and thus they 
must be designed very accurately
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Two Principles for OOP

According to  
Gamma, Helm, Johnson, Vlissides:

• program focusing on the interfaces, 
instead of implementations

• prefer object composition, instead of 
class inheritance


