
A. Bechini
Course: Java

Sp
ec

ia
l t

ha
nk

s t
o

A
. V

ec
ch

io
 fo

r
th

e
pr

ev
io

us
 v

er
si

on
 o

f t
he

se
 sl

id
es

1

1

Object-Oriented Programming:
Basic Ideas

2

Object-Oriented
Programming

Object Oriented Programming (OOP)
is a programming paradigm that is inspired

to the way Man creates models
for the comprehension of the real world.
The OOP adopt a number of mechanisms

to control and to manage
the complexity of a software project

Such a goal is pursued
applying rules aimed at:

abstracting - generalizing - classifying

A. Bechini
Course: Java

Sp
ec

ia
l t

ha
nk

s t
o

A
. V

ec
ch

io
 fo

r
th

e
pr

ev
io

us
 v

er
si

on
 o

f t
he

se
 sl

id
es

2

3

Basic Characteristics (I)

• Encapsulation: ability to tell apart
the internal state (and behavior)
fron the external state and behavior)
of an object
– Data hiding: ability to hide details

on the internal state of an object
– Type Extendibility : ability to add

user-defined types
to the native types of the language

4

Basic Characteristics (II)

• Inheritance: ability to create new types
by importing/reusing
the description of existing types

• Polymorphism: ability to call
the same functionality
(possibly requiring different implementations
depending on the use context)
by means of a unique identifier.
The proper implementation to use may be chosen
either during the compilation phase or at runtime.

A. Bechini
Course: Java

Sp
ec

ia
l t

ha
nk

s t
o

A
. V

ec
ch

io
 fo

r
th

e
pr

ev
io

us
 v

er
si

on
 o

f t
he

se
 sl

id
es

3

5

Encapsulation and Classes

• The first important attempt
to make use of encapsulation
in a programming language has been done
with the “ADT” concept (Abstract Data Type)

• The concept of “class” is a generalization
of ADT, and it turns out to be more flexible.

• A class entity in Java can be created
using the construct “class”

• A class entity in C++ can be created
using the constructs “struct”, “union”, “class”

6

Inheritance (I)

• Inheritance is a kind of relation
that allow to organize classes
within a program.

• Analyzing a new object to insert
in a program we must cope with
the following questions:
– What are the similarities with the

other objects?
– And what about the differences?

A. Bechini
Course: Java

Sp
ec

ia
l t

ha
nk

s t
o

A
. V

ec
ch

io
 fo

r
th

e
pr

ev
io

us
 v

er
si

on
 o

f t
he

se
 sl

id
es

4

7

Inheritance (II)

• Classes can be organized according to
a hierarchical model, containing
different levels.

• The higher the level,
the more generic the class;
Each level contains more specific
classes than the previous one.

• Inheritance, in OOP,
is basically an abstraction mechanism.

8

Class Diagrams (I)
Many different graphicnotations

are used in the literature:
now we use a specific one, inspired to

UML (Unified Modelling Language)

MyClass

- myPrivateVar: int=7
+ myPublicVar: double

+ myPublicMethod(): int
myProtectedMethod(): void

Class Name

Attributes

Methods

MyClass

+ myPublicMethod()
myProtectedMethod()

MyClass

A. Bechini
Course: Java

Sp
ec

ia
l t

ha
nk

s t
o

A
. V

ec
ch

io
 fo

r
th

e
pr

ev
io

us
 v

er
si

on
 o

f t
he

se
 sl

id
es

5

9

Class Diagrams (II)

In UML, different kinds of relations
among classes are taken into account:

• Derivation (Gen.-Spec.): in case a class
is a direct subclass (“child”) of a base class
(“parent”)

• Composition (aggregation, use): in case a class
holds (refers), among its members, an instance(s)
of another class.
– exclusive (aggregation, part-of)
– possibly shared (acquaintance)

• Association: semantic link among classes,
characterized by a name, the roles of the involved
classes, etc.

10

Class Diagrams (III)

ShapeCreator

Figure

Color

Shape

LineShape

Representation of different kinds
of relations among classes

Upon the reference arrow,
it can be usually specified the corresponding field

A. Bechini
Course: Java

Sp
ec

ia
l t

ha
nk

s t
o

A
. V

ec
ch

io
 fo

r
th

e
pr

ev
io

us
 v

er
si

on
 o

f t
he

se
 sl

id
es

6

11

Simple and Multiple
Inheritance

• The organization of classes
due to the inheritance relation
is a partial order

• Two different kind of inheritance
are used: simple and multiple

Class1Lev0

Class1Lev1 Class2Lev1

Class1Lev2 Class2Lev2

Class1Lev0

Class1Lev1

Class1Lev2 Class2Lev2

Class2Lev0

12

The Overriding Mechanism

• In case the implementation of an inherited method
had to be modified,
a new method declaration (and definition)
can be placed in the derived class,
keeping both the name and the signature.

• The described operation is known as
“overriding.”

• As an “overridden” method is invoked,
the executed version of the method
depends on the actual type of the class instance
used for the invocation.

A. Bechini
Course: Java

Sp
ec

ia
l t

ha
nk

s t
o

A
. V

ec
ch

io
 fo

r
th

e
pr

ev
io

us
 v

er
si

on
 o

f t
he

se
 sl

id
es

7

13

Object Diagrams

An object diagram
shows only class instances,

and it provides a view of (a portion of)
the program state (in terms of objects)

at a given moment in its execution.

ACertainFigure

shape[0]
shape[1]

ALineShape

ACircleShape

14

Polymorphism

• In the assortment of programming languages,
a number of mechanisms are present
that show particular behaviors called
“polymorphic”
(I.e. same ID, multiple functionality).

• Also some OO languages make use of
polymorphic mechanisms
in order to enhance programming flexibility.

• OO languages, because of the adopted
hierarchical organization of the classes,
typically provide specific kinds of polymorphism
that leverage the derivation relation.

A. Bechini
Course: Java

Sp
ec

ia
l t

ha
nk

s t
o

A
. V

ec
ch

io
 fo

r
th

e
pr

ev
io

us
 v

er
si

on
 o

f t
he

se
 sl

id
es

8

15

Different Kinds of
Polymorphism

• Ad hoc Polymorphism
– coercion: a function/method/operator acts upon values

of different types by converting them into the expected
type

– overloading: A specific function/method is called
by taking into account its signature too

• Pure Polymorphism
– parametric polymorphism: the type is left unspecified

by the programmer, and it will be automatically
instantiated later (at compilation time)

– inclusion: Functions in the base type keep on working
in the sub-type too. Thus the same function may have
many different implementations, and the proper one
(at a certain execution point) is chosen at runtime,
by the identification of the actual sub-type.

16

Strategies for Class Reuse
(I)

• White-box reuse (reuse by inheritance)
– pros:

• It’s simple to modify part of the implementation
(by overriding)

• It’ defined statically, at compilation time
– cons:

• “linheritance breaks encapsulation”,
I.e. derived classes usually can (must) access
the internals of the base class:

• If something is changed within the base class,
often this operation yields mandatory
modifications in the derived class

• The hierarchical relation hampers flexibility:
the use of abstract classes is recommended

A. Bechini
Course: Java

Sp
ec

ia
l t

ha
nk

s t
o

A
. V

ec
ch

io
 fo

r
th

e
pr

ev
io

us
 v

er
si

on
 o

f t
he

se
 sl

id
es

9

17

Strategies for Class Reuse
(II)

• Black-box reuse (reuse by composition)
– pros:

• Encapsulation is not broken (objects are accessed
only by their interface)

• Few dependencies by the implementation, as the
implementation of an object is done in terms of
interfaces of other objects

• It can be done at runtime
– cons:

• Interfaces must be strictly respected, and thus they
must be designed very accurately

18

Two Principles for OOP

According to
Gamma, Helm, Johnson, Vlissides:

• program focusing on the interfaces,
instead of implementations

• prefer object composition, instead of
class inheritance

