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Chapter 1

Introduction

1.1 What is Biopython?

The Biopython Project is an international association of developers of freely available Python (https:
//www.python.org) tools for computational molecular biology. Python is an object oriented, interpreted,
flexible language that is becoming increasingly popular for scientific computing. Python is easy to learn, has
a very clear syntax and can easily be extended with modules written in C, C++ or FORTRAN.

The Biopython web site (http://www.biopython.org) provides an online resource for modules, scripts,
and web links for developers of Python-based software for bioinformatics use and research. Basically, the
goal of Biopython is to make it as easy as possible to use Python for bioinformatics by creating high-quality,
reusable modules and classes. Biopython features include parsers for various Bioinformatics file formats
(BLAST, Clustalw, FASTA, Genbank,...), access to online services (NCBI, Expasy,...), interfaces to common
and not-so-common programs (Clustalw, DSSP, MSMS...), a standard sequence class, various clustering
modules, a KD tree data structure etc. and even documentation.

Basically, we just like to program in Python and want to make it as easy as possible to use Python for
bioinformatics by creating high-quality, reusable modules and scripts.

1.2 What can I find in the Biopython package

The main Biopython releases have lots of functionality, including;:

e The ability to parse bioinformatics files into Python utilizable data structures, including support for
the following formats:

— Blast output — both from standalone and WWW Blast
— Clustalw

— FASTA

— GenBank

— PubMed and Medline

— ExPASy files, like Enzyme and Prosite

— SCOP, including ‘dom’ and ‘lin’ files

— UniGene

— SwissProt

e Files in the supported formats can be iterated over record by record or indexed and accessed via a
Dictionary interface.
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e Code to deal with popular on-line bioinformatics destinations such as:

— NCBI - Blast, Entrez and PubMed services

— ExPASy — Swiss-Prot and Prosite entries, as well as Prosite searches
e Interfaces to common bioinformatics programs such as:

— Standalone Blast from NCBI
— Clustalw alignment program
— EMBOSS command line tools

e A standard sequence class that deals with sequences, ids on sequences, and sequence features.

e Tools for performing common operations on sequences, such as translation, transcription and weight
calculations.

e Code to perform classification of data using k Nearest Neighbors, Naive Bayes or Support Vector
Machines.

e Code for dealing with alignments, including a standard way to create and deal with substitution
matrices.

e Code making it easy to split up parallelizable tasks into separate processes.
e GUlI-based programs to do basic sequence manipulations, translations, BLASTing, etc.

e Extensive documentation and help with using the modules, including this file, on-line wiki documen-
tation, the web site, and the mailing list.

e Integration with BioSQL, a sequence database schema also supported by the BioPerl and BioJava
projects.

We hope this gives you plenty of reasons to download and start using Biopython!

1.3 Installing Biopython

All of the installation information for Biopython was separated from this document to make it easier to keep
updated.
The short version is use pip install biopython, see the main README file for other options.

1.4 Frequently Asked Questions (FAQ)

1. How do I cite Biopython in a scientific publication?
Please cite our application note [1, Cock et al., 2009] as the main Biopython reference. In addition,
please cite any publications from the following list if appropriate, in particular as a reference for specific
modules within Biopython (more information can be found on our website):

e For the official project announcement: [13, Chapman and Chang, 2000];
For Bio.PDB: [20, Hamelryck and Manderick, 2003];
For Bio.Cluster: [15, De Hoon et al., 2004];

For Bio.Graphics.GenomeDiagram: [2, Pritchard et al., 2006];
For Bio.Phylo and Bio.Phylo.PAML: [9, Talevich et al., 2012];
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e For the FASTQ file format as supported in Biopython, BioPerl, BioRuby, BioJava, and EMBOSS:
[7, Cock et al., 2010].

2. How should I capitalize “Biopython”? Is “BioPython” OK?
The correct capitalization is “Biopython”, not “BioPython” (even though that would have matched
BioPerl, BioJava and BioRuby).

3. How is the Biopython software licensed?
Biopython is distributed under the Biopython License Agreement. However, since the release of Biopy-
thon 1.69, some files are explicitly dual licensed under your choice of the Biopython License Agreement
or the BSD 3-Clause License. This is with the intention of later offering all of Biopython under this
dual licensing approach.

4. What is the Biopython logo and how is it licensed?
As of July 2017 and the Biopython 1.70 release, the Biopython logo is a yellow and blue snake forming
a double helix above the word “biopython” in lower case. It was designed by Patrick Kunzmann and
this logo is dual licensed under your choice of the Biopython License Agreement or the BSD 3-Clause
License.

biopython

Prior to this, the Biopython logo was two yellow snakes forming a double helix around the word
“BIOPYTHON”, designed by Henrik Vestergaard and Thomas Hamelryck in 2003 as part of an open
competition.

5. Do you have a change-log listing what’s new in each release?
See the file NEWS.rst included with the source code (originally called just NEWS), or read the latest
NEWS file on GitHub.

6. What is going wrong with my print commands?
This tutorial now uses the Python 3 style print function. As of Biopython 1.62, we support both
Python 2 and Python 3. The most obvious language difference is the print statement in Python 2
became a print function in Python 3.

For example, this will only work under Python 2:

>>> print "Hello World!"
Hello World!

If you try that on Python 3 you’ll get a SyntaxError. Under Python 3 you must write:
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10.

11.

>>> print("Hello World!")
Hello World!

Surprisingly that will also work on Python 2 — but only for simple examples printing one thing. In
general you need to add this magic line to the start of your Python scripts to use the print function
under Python 2.6 and 2.7:

from __future__ import print_function

If you forget to add this magic import, under Python 2 you’ll see extra brackets produced by trying
to use the print function when Python 2 is interpreting it as a print statement and a tuple.

How do I find out what version of Biopython I have installed?
Use this:

>>> import Bio
>>> print(Bio.__version__)

If the “import Bio” line fails, Biopython is not installed. Note that those are double underscores
before and after version. If the second line fails, your version is very out of date.

If the version string ends with a plus like “1.66+”, you don’t have an official release, but an old snapshot
of the in development code after that version was released. This naming was used until June 2016 in
the run-up to Biopython 1.68.

If the version string ends with “.dev<number>” like “1.68.dev0”, again you don’t have an official
release, but instead a snapshot of the in developement code before that version was released.

Where is the latest version of this document?
If you download a Biopython source code archive, it will include the relevant version in both HTML
and PDF formats. The latest published version of this document (updated at each release) is online:

e http://biopython.org/DIST/docs/tutorial/Tutorial.html
e http://biopython.org/DIST/docs/tutorial/Tutorial.pdf

What is wrong with my sequence comparisons?

There was a major change in Biopython 1.65 making the Seq and MutableSeq classes (and subclasses)
use simple string-based comparison (ignoring the alphabet other than if giving a warning), which you
can do explicitly with str(seql) == str(seq2).

Older versions of Biopython would use instance-based comparison for Seq objects which you can do
explicitly with id(seql) == id(seq2).

If you still need to support old versions of Biopython, use these explicit forms to avoid problems. See
Section 3.11.

Why is the Seq object missing the upper & lower methods described in this Tutorial?

You need Biopython 1.53 or later. Alternatively, use str(my_seq) .upper() to get an upper case
string. If you need a Seq object, try Seq(str(my_seq) .upper ()) but be careful about blindly re-using
the same alphabet.

What file formats do Bio.SeqI0 and Bio.AlignI0 read and write?
Check the built in docstrings (from Bio import SeqI0, then help(SeqI0)),or see http://biopython.
org/wiki/SeqI0 and http://biopython.org/wiki/AlignI0 on the wiki for the latest listing.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Why won’t the Bio.SeqI0 and Bio.AlignIO functions parse, read and write take filenames? They
insist on handles!

You need Biopython 1.54 or later, or just use handles explicitly (see Section 24.1). It is especially
important to remember to close output handles explicitly after writing your data.

Why won’t the Bio.SeqIO.write() and Bio.AlignIO.write() functions accept a single record or
alignment? They insist on a list or iterator!
You need Biopython 1.54 or later, or just wrap the item with [...] to create a list of one element.

Why doesn’t str(...) give me the full sequence of a Seq object?
You need Biopython 1.45 or later.

Why doesn’t Bio.Blast work with the latest plain text NCBI blast output?

The NCBI keep tweaking the plain text output from the BLAST tools, and keeping our parser up
to date is/was an ongoing struggle. If you aren’t using the latest version of Biopython, you could
try upgrading. However, we (and the NCBI) recommend you use the XML output instead, which is
designed to be read by a computer program.

Why has my script using Bio.Entrez.efetch() stopped working?

This could be due to NCBI changes in February 2012 introducing EFetch 2.0. First, they changed
the default return modes - you probably want to add retmode="text" to your call. Second, they are
now stricter about how to provide a list of IDs — Biopython 1.59 onwards turns a list into a comma
separated string automatically.

Why doesn’t Bio.Blast.NCBIWWW.gblast() give the same results as the NCBI BLAST website?

You need to specify the same options — the NCBI often adjust the default settings on the website, and
they do not match the QBLAST defaults anymore. Check things like the gap penalties and expectation
threshold.

Why can’t I add SeqRecord objects together?
You need Biopython 1.53 or later.

Why doesn’t Bio.Seql0.index_db() work? The module imports fine but there is no indez_db function!
You need Biopython 1.57 or later (and a Python with SQLite3 support).

Where is the MultipleSeqAlignment object? The Bio.Align module imports fine but this class isn’t
there!

You need Biopython 1.54 or later. Alternatively, the older Bio.Align.Generic.Alignment class sup-
ports some of its functionality, but using this is now discouraged.

Why can’t I run command line tools directly from the application wrappers?
You need Biopython 1.55 or later. Alternatively, use the Python subprocess module directly.

I looked in a directory for code, but I couldn’t find the code that does something. Where’s it hidden?
One thing to know is that we put code in __init__.py files. If you are not used to looking for code
in this file this can be confusing. The reason we do this is to make the imports easier for users. For
instance, instead of having to do a “repetitive” import like from Bio.GenBank import GenBank, you
can just use from Bio import GenBank.

Why doesn’t Bio.Fasta work?

We deprecated the Bio.Fasta module in Biopython 1.51 (August 2009) and removed it in Biopython
1.55 (August 2010). There is a brief example showing how to convert old code to use Bio.SeqIO
instead in the DEPRECATED.rst file.

For more general questions, the Python FAQ pages https://docs.python.org/3/faq/index.html may be
useful.
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Chapter 2

Quick Start — What can you do with
Biopython?

This section is designed to get you started quickly with Biopython, and to give a general overview of what is
available and how to use it. All of the examples in this section assume that you have some general working
knowledge of Python, and that you have successfully installed Biopython on your system. If you think you
need to brush up on your Python, the main Python web site provides quite a bit of free documentation to
get started with (https://docs.python.org/2/).

Since much biological work on the computer involves connecting with databases on the internet, some of
the examples will also require a working internet connection in order to run.

Now that that is all out of the way, let’s get into what we can do with Biopython.

2.1 General overview of what Biopython provides

As mentioned in the introduction, Biopython is a set of libraries to provide the ability to deal with “things”
of interest to biologists working on the computer. In general this means that you will need to have at
least some programming experience (in Python, of course!) or at least an interest in learning to program.
Biopython’s job is to make your job easier as a programmer by supplying reusable libraries so that you
can focus on answering your specific question of interest, instead of focusing on the internals of parsing a
particular file format (of course, if you want to help by writing a parser that doesn’t exist and contributing
it to Biopython, please go ahead!). So Biopython’s job is to make you happy!

One thing to note about Biopython is that it often provides multiple ways of “doing the same thing.”
Things have improved in recent releases, but this can still be frustrating as in Python there should ideally
be one right way to do something. However, this can also be a real benefit because it gives you lots of
flexibility and control over the libraries. The tutorial helps to show you the common or easy ways to do
things so that you can just make things work. To learn more about the alternative possibilities, look in the
Cookbook (Chapter 20, this has some cools tricks and tips), the Advanced section (Chapter 22), the built
in “docstrings” (via the Python help command, or the API documentation) or ultimately the code itself.

2.2 Working with sequences

Disputably (of course!), the central object in bioinformatics is the sequence. Thus, we’ll start with a quick
introduction to the Biopython mechanisms for dealing with sequences, the Seq object, which we’ll discuss in
more detail in Chapter 3.

Most of the time when we think about sequences we have in my mind a string of letters like ‘AGTACACTGGT’.
You can create such Seq object with this sequence as follows - the “>>>” represents the Python prompt
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followed by what you would type in:

>>> from Bio.Seq import Seq
>>> my_seq = Seq("AGTACACTGGT")
>>> my_seq

Seq(? AGTACACTGGT’)

>>> print(my_seq)

AGTACACTGGT

>>> my_seq.alphabet

Alphabet ()

What we have here is a sequence object with a generic alphabet - reflecting the fact we have not spec-
ified if this is a DNA or protein sequence (okay, a protein with a lot of Alanines, Glycines, Cysteines and
Threonines!). We’ll talk more about alphabets in Chapter 3.

In addition to having an alphabet, the Seq object differs from the Python string in the methods it
supports. You can’t do this with a plain string:

>>> my_seq

Seq(? AGTACACTGGT’)

>>> my_seq.complement ()
Seq(’TCATGTGACCA’)

>>> my_seq.reverse_complement ()
Seq(?ACCAGTGTACT’)

The next most important class is the SeqRecord or Sequence Record. This holds a sequence (as a Seq
object) with additional annotation including an identifier, name and description. The Bio.SeqI0 module
for reading and writing sequence file formats works with SeqRecord objects, which will be introduced below
and covered in more detail by Chapter 5.

This covers the basic features and uses of the Biopython sequence class. Now that you've got some idea
of what it is like to interact with the Biopython libraries, it’s time to delve into the fun, fun world of dealing
with biological file formats!

2.3 A usage example

Before we jump right into parsers and everything else to do with Biopython, let’s set up an example to
motivate everything we do and make life more interesting. After all, if there wasn’t any biology in this
tutorial, why would you want you read it?

Since I love plants, I think we’re just going to have to have a plant based example (sorry to all the fans
of other organisms out there!). Having just completed a recent trip to our local greenhouse, we’ve suddenly
developed an incredible obsession with Lady Slipper Orchids (if you wonder why, have a look at some Lady
Slipper Orchids photos on Flickr, or try a Google Image Search).

Of course, orchids are not only beautiful to look at, they are also extremely interesting for people studying
evolution and systematics. So let’s suppose we’re thinking about writing a funding proposal to do a molecular
study of Lady Slipper evolution, and would like to see what kind of research has already been done and how
we can add to that.

After alittle bit of reading up we discover that the Lady Slipper Orchids are in the Orchidaceae family and
the Cypripedioideae sub-family and are made up of 5 genera: Cypripedium, Paphiopedilum, Phragmipedium,
Selenipedium and Mexipedium.

That gives us enough to get started delving for more information. So, let’s look at how the Biopython
tools can help us. We'll start with sequence parsing in Section 2.4, but the orchids will be back later on as
well - for example we’ll search PubMed for papers about orchids and extract sequence data from GenBank in
Chapter 9, extract data from Swiss-Prot from certain orchid proteins in Chapter 10, and work with Clustal W
multiple sequence alignments of orchid proteins in Section 6.4.1.
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2.4 Parsing sequence file formats

A large part of much bioinformatics work involves dealing with the many types of file formats designed to
hold biological data. These files are loaded with interesting biological data, and a special challenge is parsing
these files into a format so that you can manipulate them with some kind of programming language. However
the task of parsing these files can be frustrated by the fact that the formats can change quite regularly, and
that formats may contain small subtleties which can break even the most well designed parsers.

We are now going to briefly introduce the Bio.SeqI0 module — you can find out more in Chapter 5. We’ll
start with an online search for our friends, the lady slipper orchids. To keep this introduction simple, we're
just using the NCBI website by hand. Let’s just take a look through the nucleotide databases at NCBI,
using an Entrez online search (https://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Nucleotide)
for everything mentioning the text Cypripedioideae (this is the subfamily of lady slipper orchids).

When this tutorial was originally written, this search gave us only 94 hits, which we saved as a FASTA
formatted text file and as a GenBank formatted text file (files ls_orchid.fasta and 1s_orchid.gbk, also included
with the Biopython source code under docs/tutorial/examples/).

If you run the search today, you’ll get hundreds of results! When following the tutorial, if you want to
see the same list of genes, just download the two files above or copy them from docs/examples/ in the
Biopython source code. In Section 2.5 we will look at how to do a search like this from within Python.

2.4.1 Simple FASTA parsing example

If you open the lady slipper orchids FASTA file Is_orchid.fasta in your favourite text editor, you'll see that
the file starts like this:

>gi|2765658|emb|Z78533.1|CIZ78533 C.irapeanum 5.85 rRNA gene and ITS1 and ITS2 DNA
CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGGAATAAACGATCGAGTG
AATCCGGAGGACCGGTGTACTCAGCTCACCGGGGGCATTGCTCCCGTGGTGACCCTGATTTGTTGTTGGG

It contains 94 records, each has a line starting with “>” (greater-than symbol) followed by the sequence
on one or more lines. Now try this in Python:

from Bio import SeqlO

for seq_record in SeqlIO.parse("ls_orchid.fasta", "fasta"):
print(seq_record.id)
print (repr(seq_record.seq))
print (len(seq_record))

You should get something like this on your screen:

gil2765658|emb|Z78533.1|CIZ78533
Seq(’CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGG. . .CGC’, SingleLetterAlphabet())
740

gil2765564|emb|Z78439.1|PBZ78439
Seq(’CATTGTTGAGATCACATAATAATTGATCGAGTTAATCTGGAGGATCTGTTTACT. . .GCC’, SingleLetterAlphabet())
592

Notice that the FASTA format does not specify the alphabet, so Bio.SeqI0 has defaulted to the rather
generic SingleLetterAlphabet () rather than something DNA specific.
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2.4.2 Simple GenBank parsing example

Now let’s load the GenBank file Is_orchid.gbk instead - notice that the code to do this is almost identical to
the snippet used above for the FASTA file - the only difference is we change the filename and the format
string:

from Bio import SeqIO

for seq_record in SeqI0.parse("ls_orchid.gbk", "genbank"):
print(seq_record.id)
print (repr(seq_record.seq))
print(len(seq_record))

This should give:

278533.1

Seq(’CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGG. . .CGC’, IUPACAmbiguousDNA())
740

278439.1

Seq(’CATTGTTGAGATCACATAATAATTGATCGAGTTAATCTGGAGGATCTGTTTACT. . .GCC’, IUPACAmbiguousDNA())
592

This time Bio.SeqI0 has been able to choose a sensible alphabet, [UPAC Ambiguous DNA. You’ll also
notice that a shorter string has been used as the seq_record.id in this case.

2.4.3 1 love parsing — please don’t stop talking about it!

Biopython has a lot of parsers, and each has its own little special niches based on the sequence format it is
parsing and all of that. Chapter 5 covers Bio.SeqI0 in more detail, while Chapter 6 introduces Bio.AlignI0
for sequence alignments.

While the most popular file formats have parsers integrated into Bio.SeqI0 and/or Bio.AlignIO, for
some of the rarer and unloved file formats there is either no parser at all, or an old parser which has
not been linked in yet. Please also check the wiki pages http://biopython.org/wiki/SeqIO and http:
//biopython.org/wiki/AlignI0 for the latest information, or ask on the mailing list. The wiki pages
should include an up to date list of supported file types, and some additional examples.

The next place to look for information about specific parsers and how to do cool things with them is in
the Cookbook (Chapter 20 of this Tutorial). If you don’t find the information you are looking for, please
consider helping out your poor overworked documentors and submitting a cookbook entry about it! (once
you figure out how to do it, that is!)

2.5 Connecting with biological databases

One of the very common things that you need to do in bioinformatics is extract information from biological
databases. It can be quite tedious to access these databases manually, especially if you have a lot of repetitive
work to do. Biopython attempts to save you time and energy by making some on-line databases available
from Python scripts. Currently, Biopython has code to extract information from the following databases:

e Entrez (and PubMed) from the NCBI — See Chapter 9.
e ExPASy — See Chapter 10.

e SCOP — See the Bio.SCOP.search() function.
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The code in these modules basically makes it easy to write Python code that interact with the CGI
scripts on these pages, so that you can get results in an easy to deal with format. In some cases, the results
can be tightly integrated with the Biopython parsers to make it even easier to extract information.

2.6 What to do next

Now that you've made it this far, you hopefully have a good understanding of the basics of Biopython and
are ready to start using it for doing useful work. The best thing to do now is finish reading this tutorial,
and then if you want start snooping around in the source code, and looking at the automatically generated
documentation.

Once you get a picture of what you want to do, and what libraries in Biopython will do it, you should
take a peak at the Cookbook (Chapter 20), which may have example code to do something similar to what
you want to do.

If you know what you want to do, but can’t figure out how to do it, please feel free to post questions
to the main Biopython list (see http://biopython.org/wiki/Mailing_lists). This will not only help us
answer your question, it will also allow us to improve the documentation so it can help the next person do
what you want to do.

Enjoy the code!
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Chapter 3

Sequence objects

Biological sequences are arguably the central object in Bioinformatics, and in this chapter we’ll introduce
the Biopython mechanism for dealing with sequences, the Seq object. Chapter 4 will introduce the related
SeqRecord object, which combines the sequence information with any annotation, used again in Chapter 5
for Sequence Input/Output.

Sequences are essentially strings of letters like AGTACACTGGT, which seems very natural since this is the
most common way that sequences are seen in biological file formats.

There are two important differences between Seq objects and standard Python strings. First of all, they
have different methods. Although the Seq object supports many of the same methods as a plain string, its
translate () method differs by doing biological translation, and there are also additional biologically relevant
methods like reverse_complement (). Secondly, the Seq object has an important attribute, alphabet, which
is an object describing what the individual characters making up the sequence string “mean”, and how they
should be interpreted. For example, is AGTACACTGGT a DNA sequence, or just a protein sequence that
happens to be rich in Alanines, Glycines, Cysteines and Threonines?

3.1 Sequences and Alphabets

The alphabet object is perhaps the important thing that makes the Seq object more than just a string. The
currently available alphabets for Biopython are defined in the Bio.Alphabet module. We’ll use the ITUPAC
alphabets here to deal with some of our favorite objects: DNA, RNA and Proteins.

Bio.Alphabet.IUPAC provides basic definitions for proteins, DNA and RNA, but additionally provides
the ability to extend and customize the basic definitions. For instance, for proteins, there is a basic TU-
PACProtein class, but there is an additional Extended[lUPACProtein class providing for the additional
elements “U” (or “Sec” for selenocysteine) and “O” (or “Pyl” for pyrrolysine), plus the ambiguous symbols
“B” (or “Asx” for asparagine or aspartic acid), “Z” (or “Glx” for glutamine or glutamic acid), “J” (or “Xle”
for leucine isoleucine) and “X” (or “Xxx” for an unknown amino acid). For DNA you’ve got choices of IUPA-
CUnambiguousDNA, which provides for just the basic letters, IUPACAmbiguousDNA (which provides for
ambiguity letters for every possible situation) and Extended[UPACDNA, which allows letters for modified
bases. Similarly, RNA can be represented by IUPACAmbiguousRNA or IUPACUnambiguousRNA.

The advantages of having an alphabet class are two fold. First, this gives an idea of the type of information
the Seq object contains. Secondly, this provides a means of constraining the information, as a means of type
checking.

Now that we know what we are dealing with, let’s look at how to utilize this class to do interesting work.
You can create an ambiguous sequence with the default generic alphabet like this:

>>> from Bio.Seq import Seq
>>> my_seq = Seq("AGTACACTGGT")
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>>> my_seq
Seq(?AGTACACTGGT’)
>>> my_seq.alphabet
Alphabet ()

However, where possible you should specify the alphabet explicitly when creating your sequence objects
- in this case an unambiguous DNA alphabet object:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> my_seq = Seq("AGTACACTGGT", IUPAC.unambiguous_dna)
>>> my_seq

Seq(?AGTACACTGGT’, IUPACUnambiguousDNA())

>>> my_seq.alphabet

IUPACUnambiguousDNA ()

Unless of course, this really is an amino acid sequence:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> my_prot = Seq("AGTACACTGGT", IUPAC.protein)
>>> my_prot

Seq(’AGTACACTGGT’, IUPACProtein())

>>> my_prot.alphabet

TIUPACProtein()

3.2 Sequences act like strings

In many ways, we can deal with Seq objects as if they were normal Python strings, for example getting the
length, or iterating over the elements:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> my_seq = Seq("GATCG", IUPAC.unambiguous_dna)
>>> for index, letter in enumerate(my_seq):
print("%i %s" % (index, letter))

W N+~ O
QA= Q-

4 G
>>> print(len(my_seq))
5

You can access elements of the sequence in the same way as for strings (but remember, Python counts
from zero!):

>>> print(my_seq[0]) #first letter

G
>>> print(my_seq[2]) #third letter
T
>>> print(my_seq[-1]) #last letter
G
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The Seq object has a .count() method, just like a string. Note that this means that like a Python
string, this gives a non-overlapping count:

>>> from Bio.Seq import Seq
>>> "AAAA" . count ("AA")

2

>>> Seq("AAAA") .count ("AA")
2

For some biological uses, you may actually want an overlapping count (i.e. 3 in this trivial example). When
searching for single letters, this makes no difference:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> my_seq = Seq("GATCGATGGGCCTATATAGGATCGAAAATCGC", IUPAC.unambiguous_dna)
>>> len(my_seq)

32

>>> my_seq.count ("G")

9

>>> 100 * float(my_seq.count("G") + my_seq.count("C")) / len(my_seq)

46.875

While you could use the above snippet of code to calculate a GC%, note that the Bio.SeqUtils module
has several GC functions already built. For example:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> from Bio.SeqUtils import GC

>>> my_seq = Seq("GATCGATGGGCCTATATAGGATCGAAAATCGC", IUPAC.unambiguous_dna)
>>> GC(my_seq)

46.875

Note that using the Bio.SeqUtils.GC() function should automatically cope with mixed case sequences and
the ambiguous nucleotide S which means G or C.

Also note that just like a normal Python string, the Seq object is in some ways “read-only”. If you need
to edit your sequence, for example simulating a point mutation, look at the Section 3.12 below which talks
about the MutableSeq object.

3.3 Slicing a sequence
A more complicated example, let’s get a slice of the sequence:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> my_seq = Seq("GATCGATGGGCCTATATAGGATCGAAAATCGC", IUPAC.unambiguous_dna)
>>> my_seq[4:12]

Seq(’GATGGGCC’ , IUPACUnambiguousDNA())

Two things are interesting to note. First, this follows the normal conventions for Python strings. So
the first element of the sequence is 0 (which is normal for computer science, but not so normal for biology).
When you do a slice the first item is included (i.e. 4 in this case) and the last is excluded (12 in this case),
which is the way things work in Python, but of course not necessarily the way everyone in the world would
expect. The main goal is to stay consistent with what Python does.
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The second thing to notice is that the slice is performed on the sequence data string, but the new object
produced is another Seq object which retains the alphabet information from the original Seq object.

Also like a Python string, you can do slices with a start, stop and stride (the step size, which defaults to
one). For example, we can get the first, second and third codon positions of this DNA sequence:

>>> my_seq[0::3]

Seq(’GCTGTAGTAAG’ , IUPACUnambiguousDNA())
>>> my_seq[1::3]

Seq(’AGGCATGCATC’, IUPACUnambiguousDNA())
>>> my_seq[2::3]

Seq(’TAGCTAAGAC’, IUPACUnambiguousDNA(Q))

Another stride trick you might have seen with a Python string is the use of a -1 stride to reverse the
string. You can do this with a Seq object too:

>>> my_seq[::-1]
Seq(’CGCTAAAAGCTAGGATATATCCGGGTAGCTAG’ , TUPACUnambiguousDNA())

3.4 Turning Seq objects into strings

If you really do just need a plain string, for example to write to a file, or insert into a database, then this is
very easy to get:

>>> str(my_seq)
’GATCGATGGGCCTATATAGGATCGAAAATCGC”?

Since calling str() on a Seq object returns the full sequence as a string, you often don’t actually have to
do this conversion explicitly. Python does this automatically in the print function (and the print statement
under Python 2):

>>> print(my_seq)
GATCGATGGGCCTATATAGGATCGAAAATCGC

You can also use the Seq object directly with a %s placeholder when using the Python string formatting
or interpolation operator (%):

>>> fasta_format_string = ">Name\n’s\n" 7 my_seq
>>> print(fasta_format_string)

>Name

GATCGATGGGCCTATATAGGATCGAAAATCGC

<BLANKLINE>

This line of code constructs a simple FASTA format record (without worrying about line wrapping). Sec-
tion 4.6 describes a neat way to get a FASTA formatted string from a SeqRecord object, while the more
general topic of reading and writing FASTA format sequence files is covered in Chapter 5.

>>> str(my_seq)
?GATCGATGGGCCTATATAGGATCGAAAATCGC”?
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3.5 Concatenating or adding sequences

Naturally, you can in principle add any two Seq objects together - just like you can with Python strings
to concatenate them. However, you can’t add sequences with incompatible alphabets, such as a protein
sequence and a DNA sequence:

>>> from Bio.Alphabet import IUPAC

>>> from Bio.Seq import Seq

>>> protein_seq = Seq("EVRNAK", IUPAC.protein)
>>> dna_seq = Seq("ACGT", IUPAC.unambiguous_dna)
>>> protein_seq + dna_seq

Traceback (most recent call last):

TypeError: Incompatible alphabets IUPACProtein() and IUPACUnambiguousDNA()
If you really wanted to do this, you’d have to first give both sequences generic alphabets:

>>> from Bio.Alphabet import generic_alphabet
>>> protein_seq.alphabet = generic_alphabet
>>> dna_seq.alphabet = generic_alphabet

>>> protein_seq + dna_seq

Seq (’EVRNAKACGT’)

Here is an example of adding a generic nucleotide sequence to an unambiguous IUPAC DNA sequence,
resulting in an ambiguous nucleotide sequence:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import generic_nucleotide
>>> from Bio.Alphabet import IUPAC

>>> nuc_seq = Seq("GATCGATGC", generic_nucleotide)
>>> dna_seq = Seq("ACGT", IUPAC.unambiguous_dna)

>>> nuc_seq

Seq(’GATCGATGC’, NucleotideAlphabet())

>>> dna_seq

Seq(’ACGT’, IUPACUnambiguousDNA())

>>> nuc_seq + dna_seq

Seq(’GATCGATGCACGT’, NucleotideAlphabet())

You may often have many sequences to add together, which can be done with a for loop like this:

>>> from Bio.Seq import Seq
>>> from Bio.Alphabet import generic_dna
>>> list_of_seqs = [Seq("ACGT", generic_dna), Seq("AACC", generic_dna), Seq("GGIT", generic_dna)]
>>> concatenated = Seq("", generic_dna)
>>> for s in list_of_seqgs:
concatenated += s

>>> concatenated
Seq(’ACGTAACCGGTT’, DNAAlphabet())

Or, a more elegant approach is to the use built in sum function with its optional start value argument
(which otherwise defaults to zero):
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>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import generic_dna

>>> list_of_seqs = [Seq("ACGT", generic_dna), Seq("AACC", generic_dna), Seq("GGTIT", generic_dna)]
>>> sum(list_of_seqs, Seq("", generic_dna))

Seq(? ACGTAACCGGTT’, DNAAlphabet())

Unlike the Python string, the Biopython Seq does not (currently) have a . join method.

3.6 Changing case

Python strings have very useful upper and lower methods for changing the case. As of Biopython 1.53, the
Seq object gained similar methods which are alphabet aware. For example,

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import generic_dna
>>> dna_seq = Seq("acgtACGT", generic_dna)
>>> dna_seq

Seq(’acgtACGT’, DNAAlphabet())

>>> dna_seq.upper ()

Seq(’ACGTACGT’, DNAAlphabet ())

>>> dna_seq.lower()

Seq(’acgtacgt’, DNAAlphabet())

These are useful for doing case insensitive matching:

>>> "GTAC" in dna_seq

False

>>> "GTAC" in dna_seq.upper()
True

Note that strictly speaking the IUPAC alphabets are for upper case sequences only, thus:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> dna_seq = Seq("ACGT", IUPAC.unambiguous_dna)
>>> dna_seq

Seq(’ACGT’, IUPACUnambiguousDNA())

>>> dna_seq.lower()

Seq(’acgt’, DNAAlphabet())

3.7 Nucleotide sequences and (reverse) complements

For nucleotide sequences, you can easily obtain the complement or reverse complement of a Seq object using
its built-in methods:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> my_seq = Seq("GATCGATGGGCCTATATAGGATCGAAAATCGC", IUPAC.unambiguous_dna)
>>> my_seq

Seq(’GATCGATGGGCCTATATAGGATCGAAAATCGC’ , IUPACUnambiguousDNA())

>>> my_seq.complement ()

Seq(’CTAGCTACCCGGATATATCCTAGCTTTTAGCG’ , IUPACUnambiguousDNA())

>>> my_seq.reverse_complement ()

Seq(’GCGATTTTCGATCCTATATAGGCCCATCGATC’ , IUPACUnambiguousDNA())
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As mentioned earlier, an easy way to just reverse a Seq object (or a Python string) is slice it with -1
step:

>>> my_seql[::-1]
Seq(’CGCTAAAAGCTAGGATATATCCGGGTAGCTAG’ , IUPACUnambiguousDNA())

In all of these operations, the alphabet property is maintained. This is very useful in case you accidentally
end up trying to do something weird like take the (reverse)complement of a protein sequence:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> protein_seq = Seq("EVRNAK", IUPAC.protein)
>>> protein_seq.complement ()

Traceback (most recent call last):

ValueError: Proteins do not have complements!

The example in Section 5.5.3 combines the Seq object’s reverse complement method with Bio.SeqIO for
sequence input / output.

3.8 Transcription

Before talking about transcription, I want to try to clarify the strand issue. Counsider the following (made
up) stretch of double stranded DNA which encodes a short peptide:

DNA coding strand (aka Crick strand, strand +1)
5 ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG 3
CEEEERETEEr e e e e e et e e e e
3 TACCGGTAACATTACCCGGCGACTTTCCCACGGGCTATC 5
DNA template strand (aka Watson strand, strand —1)

Transcription

!

5 AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG 3
Single stranded messenger RNA

The actual biological transcription process works from the template strand, doing a reverse complement
(TCAG — CUGA) to give the mRNA. However, in Biopython and bioinformatics in general, we typically
work directly with the coding strand because this means we can get the mRNA sequence just by switching
T — U.

Now let’s actually get down to doing a transcription in Biopython. First, let’s create Seq objects for the
coding and template DNA strands:

>>> from Bio.Seq import Seq
>>> from Bio.Alphabet import IUPAC

>>> coding_dna = Seq("ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG", IUPAC.unambiguous_dna)
>>> coding_dna

Seq(’ ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG’ , IUPACUnambiguousDNA())

>>> template_dna = coding_dna.reverse_complement ()

>>> template_dna

Seq(’CTATCGGGCACCCTTTCAGCGGCCCATTACAATGGCCAT’, IUPACUnambiguousDNA())
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These should match the figure above - remember by convention nucleotide sequences are normally read from
the 5’ to 3’ direction, while in the figure the template strand is shown reversed.

Now let’s transcribe the coding strand into the corresponding mRNA, using the Seq object’s built in
transcribe method:

>>> coding_dna

Seq(’ ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG’ , IUPACUnambiguousDNA())
>>> messenger_rna = coding_dna.transcribe()

>>> messenger_rna

Seq (’ AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG’, IUPACUnambiguousRNA())

As you can see, all this does is switch T — U, and adjust the alphabet.
If you do want to do a true biological transcription starting with the template strand, then this becomes
a two-step process:

>>> template_dna.reverse_complement () .transcribe()
Seq (’ AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG’, IUPACUnambiguousRNA())

The Seq object also includes a back-transcription method for going from the mRNA to the coding strand
of the DNA. Again, this is a simple U — T substitution and associated change of alphabet:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> messenger_rna = Seq("AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG", IUPAC.unambiguous_rna)
>>> messenger_rna

Seq(? AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG’ , IUPACUnambiguousRNA())

>>> messenger_rna.back_transcribe()

Seq(’ ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG’ , TUPACUnambiguousDNA())

Note: The Seq object’s transcribe and back_transcribe methods were added in Biopython 1.49. For
older releases you would have to use the Bio.Seq module’s functions instead, see Section 3.14.

3.9 Translation

Sticking with the same example discussed in the transcription section above, now let’s translate this mRNA
into the corresponding protein sequence - again taking advantage of one of the Seq object’s biological meth-
ods:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> messenger_rna = Seq("AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG", IUPAC.unambiguous_rna)
>>> messenger_rna

Seq (’ AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG’ , IUPACUnambiguousRNA())

>>> messenger_rna.translate()

Seq(’MAIVMGR*KGAR*’ , HasStopCodon(IUPACProtein(), ’*’))

You can also translate directly from the coding strand DNA sequence:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> coding_dna = Seq("ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG", IUPAC.unambiguous_dna)
>>> coding_dna

Seq(’ ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG’ , IUPACUnambiguousDNA())

>>> coding_dna.translate()

Seq(’MAIVMGR*KGAR*’, HasStopCodon(IUPACProtein(), ’*’))
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You should notice in the above protein sequences that in addition to the end stop character, there is
an internal stop as well. This was a deliberate choice of example, as it gives an excuse to talk about some
optional arguments, including different translation tables (Genetic Codes).

The translation tables available in Biopython are based on those from the NCBI (see the next section of
this tutorial). By default, translation will use the standard genetic code (NCBI table id 1). Suppose we are
dealing with a mitochondrial sequence. We need to tell the translation function to use the relevant genetic
code instead:

>>> coding_dna.translate(table="Vertebrate Mitochondrial')
Seq(’MAIVMGRWKGAR*’, HasStopCodon(IUPACProtein(), ’*’))

You can also specify the table using the NCBI table number which is shorter, and often included in the
feature annotation of GenBank files:

>>> coding_dna.translate(table=2)
Seq(’MAIVMGRWKGAR*’, HasStopCodon(IUPACProtein(), 7x2))

Now, you may want to translate the nucleotides up to the first in frame stop codon, and then stop (as
happens in nature):

>>> coding_dna.translate()

Seq(’MAIVMGR*KGAR*’, HasStopCodon(IUPACProtein(), ’*’))
>>> coding_dna.translate(to_stop=True)

Seq(’MAIVMGR’, IUPACProtein())

>>> coding_dna.translate(table=2)

Seq(’MAIVMGRWKGAR*’ , HasStopCodon(IUPACProtein(), ’*’))
>>> coding_dna.translate(table=2, to_stop=True)
Seq(’MAIVMGRWKGAR’, IUPACProtein())

Notice that when you use the to_stop argument, the stop codon itself is not translated - and the stop symbol
is not included at the end of your protein sequence.
You can even specify the stop symbol if you don’t like the default asterisk:

>>> coding_dna.translate(table=2, stop_symbol="@")
Seq(’MAIVMGRWKGARQ’ , HasStopCodon(IUPACProtein(), ’@’))

Now, suppose you have a complete coding sequence CDS, which is to say a nucleotide sequence (e.g.
mRNA — after any splicing) which is a whole number of codons (i.e. the length is a multiple of three),
commences with a start codon, ends with a stop codon, and has no internal in-frame stop codons. In
general, given a complete CDS, the default translate method will do what you want (perhaps with the
to_stop option). However, what if your sequence uses a non-standard start codon? This happens a lot in
bacteria — for example the gene yaaX in E. coli K12:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import generic_dna

>>> gene = Seq("GTGAAAAAGATGCAATCTATCGTACTCGCACTTTCCCTGGTTCTGGTCGCTCCCATGGCA"
"GCACAGGCTGCGGAAATTACGTTAGTCCCGTCAGTAAAATTACAGATAGGCGATCGTGAT"
"AATCGTGGCTATTACTGGGATGGAGGTCACTGGCGCGACCACGGCTGGTGGAAACAACAT"
"TATGAATGGCGAGGCAATCGCTGGCACCTACACGGACCGCCGCCACCGCCGCGCCACCAT"
"AAGAAAGCTCCTCATGATCATCACGGCGGTCATGGTCCAGGCAAACATCACCGCTAA",

.. generic_dna)

>>> gene.translate(table="Bacterial")

Seq(’ VKKMQSIVLALSLVLVAPMAAQAAEITLVPSVKLQIGDRDNRGYYWDGGHWRDH. . .HR*’,

HasStopCodon (ExtendedIUPACProtein(), ’*7)

+ + + +
PP

27


https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

>>> gene.translate(table="Bacterial", to_stop=True)
Seq(’ VKKMQSIVLALSLVLVAPMAAQAAEITLVPSVKLQIGDRDNRGYYWDGGHWRDH. . .HHR’,
ExtendedIUPACProtein())

In the bacterial genetic code GTG is a valid start codon, and while it does normally encode Valine, if used as
a start codon it should be translated as methionine. This happens if you tell Biopython your sequence is a
complete CDS:

>>> gene.translate(table="Bacterial", cds=True)
Seq(’MKKMQSIVLALSLVLVAPMAAQAAEITLVPSVKLQIGDRDNRGYYWDGGHWRDH. . .HHR,
ExtendedIUPACProtein())

In addition to telling Biopython to translate an alternative start codon as methionine, using this option
also makes sure your sequence really is a valid CDS (you’ll get an exception if not).

The example in Section 20.1.3 combines the Seq object’s translate method with Bio.SeqIO for sequence
input/output.

3.10 Translation Tables

In the previous sections we talked about the Seq object translation method (and mentioned the equivalent
function in the Bio.Seq module — see Section 3.14). Internally these use codon table objects derived from
the NCBI information at ftp://ftp.ncbi.nlm.nih.gov/entrez/misc/data/gc.prt, also shown on https:
//www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi in a much more readable layout.

As before, let’s just focus on two choices: the Standard translation table, and the translation table for
Vertebrate Mitochondrial DNA.

>>> from Bio.Data import CodonTable
>>> standard_table = CodonTable.unambiguous_dna_by_name["Standard"]
>>> mito_table = CodonTable.unambiguous_dna_by_name["Vertebrate Mitochondrial"]

Alternatively, these tables are labeled with ID numbers 1 and 2, respectively:

>>> from Bio.Data import CodonTable
>>> standard_table = CodonTable.unambiguous_dna_by_id[1]
>>> mito_table = CodonTable.unambiguous_dna_by_id[2]

You can compare the actual tables visually by printing them:

>>> print(standard_table)
Table 1 Standard, SGCO

| T | C | A (e |
R o Fomm Fomm +-=
T | TTIT F | TCT S | TAT Y | TGT C | T
T | TIC F | TCC S | TACY | TGC C | C
T | TTA L | TCA S | TAA Stop| TGA Stopl| A
T | TTG L(s)| TCG S | TAG Stop| TGG W | G
B Fomm Fomm Fomm +-=
C | CIT L | CCT P | CAT H | CGT R | T
C | CIC L | CCC P | CAC H | CGC R | C
C| CTA L | CCA P | CAA Q | CGA R | A
C | CTG L(s)| CCG P | CAG Q | CGG R | G
e Fomm Fomm Fommm +-=


ftp://ftp.ncbi.nlm.nih.gov/entrez/misc/data/gc.prt
https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

A | ATT I | ACT T | AAT N | AGT S | T
A | ATC I | ACCT | AAC N | AGC S | C
A | ATA T | ACA T | AAA K | AGA R | A
A | ATG M(s)| ACGT | AAGK | AGGR | G
——t—— Fo—m—————— o —————— o ————— +—=
G| GIT V | GCT A | GAT D | GGT G | T
G| GIC V | GCC A | GAC D | GGC G | C
G | GTA V | GCA A | GAA E | GGA G | A
G| GIG V | GCG A | GAG E | GGG G | G
——tm— Fmmm—————— Fmmm—————— o +—=
and:
>>> print(mito_table)
Table 2 Vertebrate Mitochondrial, SGC1

| T | C | A | G I
——tm Fo—— Fomm Fomm +—-
T | TIT F | TCT S | TAT Y | TGT C | T
T | TIC F | TCC S | TAC Y | TGC C | C
T | TTA L | TCA S | TAA Stopl| TGA W | A
T | TTG L | TCG S | TAG Stopl| TGG W | G
——t— o o ———— Fo—————— +—-
C | CIT L | CCT P | CAT H | CGT R | T
C | CIC L | ccc P | CAC H | CGC R | C
C | CTA L | CCAP | CAA Q | CGA R | A
C | CIG L | CCG P | CAG Q | CGG R | G
——t—————— o o ———— o ———— +—-
A | ATT I(s)| ACTT | AATN | AGTS | T
A | ATC I(s)| ACC T | AAC N | AGC S | C
A | ATA M(s)| ACA T | AAA XK | AGA Stopl| A
A | ATG M(s)| ACG T | AAG K | AGG Stopl| G
——tm————— o o o +—-
G| GIT V | GCT A | GAT D | GGT G | T
G| GTIC V | GCC A | GACD | GGC G | C
G| GTA V | GCA A | GAA E | GGA G | A
G | GIG V(s)| GCG A | GAG E | GGG G | G
——tm————— o o o +—-

You may find these following properties useful — for example if you are trying to do your own gene finding;:

>>> mito_table.stop_codons

[>TAA’>, °TAG’, °AGA’, ’AGG’]

>>> mito_table.start_codons

[’ATT’>, ’ATC’, ’ATA’, ’ATG’, ’GTG’]
>>> mito_table.forward_table["ACG"]
7TJ

3.11 Comparing Seq objects

Sequence comparison is actually a very complicated topic, and there is no easy way to decide if two sequences
are equal. The basic problem is the meaning of the letters in a sequence are context dependent - the letter
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“A” could be part of a DNA, RNA or protein sequence. Biopython uses alphabet objects as part of each
Seq object to try to capture this information - so comparing two Seq objects could mean considering both
the sequence strings and the alphabets.

For example, you might argue that the two DNA Seq objects Seq("ACGT", IUPAC.unambiguous_dna)
and Seq("ACGT", IUPAC.ambiguous_dna) should be equal, even though they do have different alphabets.
Depending on the context this could be important.

This gets worse — suppose you think Seq("ACGT", IUPAC.unambiguous_dna) and Seq("ACGT") (i.e. the
default generic alphabet) should be equal. Then, logically, Seq("ACGT", IUPAC.protein) and Seq("ACGT")
should also be equal. Now, in logic if A = B and B = C, by transitivity we expect A = C. So for logical
consistency we’d require Seq("ACGT", IUPAC.unambiguous_dna) and Seq("ACGT", IUPAC.protein) to be
equal — which most people would agree is just not right. This transitivity also has implications for using Seq
objects as Python dictionary keys.

Now, in everyday use, your sequences will probably all have the same alphabet, or at least all be the
same type of sequence (all DNA, all RNA, or all protein). What you probably want is to just compare the
sequences as strings — which you can do explicitly:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import IUPAC

>>> seql = Seq("ACGT", IUPAC.unambiguous_dna)
>>> seq2 = Seq("ACGT", IUPAC.ambiguous_dna)

>>> str(seql) == str(seq2)
True
>>> str(seql) == str(seql)
True

So, what does Biopython do? Well, as of Biopython 1.65, sequence comparison only looks at the sequence,
essentially ignoring the alphabet:

>>> seql == seq2
True

>>> seql == "ACGT"
True

As an extension to this, using sequence objects as keys in a Python dictionary is now equivalent to using
the sequence as a plain string for the key. See also Section 3.4.

Note if you compare sequences with incompatible alphabets (e.g. DNA vs RNA, or nucleotide versus
protein), then you will get a warning but for the comparison itself only the string of letters in the sequence
is used:

>>> from Bio.Seq import Seq

>>> from Bio.Alphabet import generic_dna, generic_protein

>>> dna_seq = Seq("ACGT", generic_dna)

>>> prot_seq = Seq("ACGT", generic_protein)

>>> dna_seq == prot_seq

BiopythonWarning: Incompatible alphabets DNAAlphabet() and ProteinAlphabet ()
True

WARNING: Older versions of Biopython instead used to check if the Seq objects were the same object
in memory. This is important if you need to support scripts on both old and new versions of Biopython.
Here make the comparison explicit by wrapping your sequence objects with either str(...) for string based
comparison or id(...) for object instance based comparison.
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3.12 MutableSeq objects

Just like the normal Python string, the Seq object is “read only”, or in Python terminology, immutable.
Apart from wanting the Seq object to act like a string, this is also a useful default since in many biological
applications you want to ensure you are not changing your sequence data:

>>> from Bio.Seq import Seq
>>> from Bio.Alphabet import IUPAC
>>> my_seq = Seq("GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA", IUPAC.unambiguous_dna)

Observe what happens if you try to edit the sequence:

>>> my_seq[5] = "G"
Traceback (most recent call last):

TypeError: ’Seq’ object does not support item assignment

However, you can convert it into a mutable sequence (a MutableSeq object) and do pretty much anything
you want with it:

>>> mutable_seq = my_seq.tomutable()
>>> mutable_seq
MutableSeq(’GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA’ , IUPACUnambiguousDNA())

Alternatively, you can create a MutableSeq object directly from a string:

>>> from Bio.Seq import MutableSeq
>>> from Bio.Alphabet import IUPAC
>>> mutable_seq = MutableSeq("GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA", IUPAC.unambiguous_dna)

Either way will give you a sequence object which can be changed:

>>> mutable_seq

MutableSeq(’GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA’, IUPACUnambiguousDNA())
>>> mutable_seq[5] = "C"

>>> mutable_seq

MutableSeq(’GCCATCGTAATGGGCCGCTGAAAGGGTGCCCGA’, IUPACUnambiguousDNA())
>>> mutable_seq.remove("T")

>>> mutable_seq

MutableSeq(’GCCACGTAATGGGCCGCTGAAAGGGTGCCCGA’ , IUPACUnambiguousDNA(Q))
>>> mutable_seq.reverse()

>>> mutable_seq

MutableSeq(’ AGCCCGTGGGAAAGTCGCCGGGTAATGCACCG’ , IUPACUnambiguousDNA(Q))

Do note that unlike the Seq object, the MutableSeq object’s methods like reverse_complement () and
reverse () act in-situ!

An important technical difference between mutable and immutable objects in Python means that you
can’t use a MutableSeq object as a dictionary key, but you can use a Python string or a Seq object in this
way.

Once you have finished editing your a MutableSeq object, it’s easy to get back to a read-only Seq object
should you need to:

>>> new_seq = mutable_seq.toseq()
>>> new_seq
Seq(? AGCCCGTGGGAAAGTCGCCGGGTAATGCACCG’ , IUPACUnambiguousDNA())

You can also get a string from a MutableSeq object just like from a Seq object (Section 3.4).
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3.13 UnknownSeq objects

The UnknownSeq object is a subclass of the basic Seq object and its purpose is to represent a sequence where
we know the length, but not the actual letters making it up. You could of course use a normal Seq object
in this situation, but it wastes rather a lot of memory to hold a string of a million “N” characters when you
could just store a single letter “N” and the desired length as an integer.

>>> from Bio.Seq import UnknownSeq
>>> unk = UnknownSeq(20)

>>> unk

UnknownSeq(20, character=’7’)

>>> print (unk)
PPPPPPPPPPRPPPPPRP??

>>> len(unk)
20

You can of course specify an alphabet, meaning for nucleotide sequences the letter defaults to “N” and
for proteins “X”, rather than just “?”.

>>> from Bio.Seq import UnknownSeq

>>> from Bio.Alphabet import IUPAC

>>> unk_dna = UnknownSeq(20, alphabet=IUPAC.ambiguous_dna)
>>> unk_dna

UnknownSeq (20, alphabet=IUPACAmbiguousDNA(), character=’N’)
>>> print (unk_dna)

NNNNNNNNNNNNNNNNNNNN

You can use all the usual Seq object methods too, note these give back memory saving UnknownSeq
objects where appropriate as you might expect:

>>> unk_dna

UnknownSeq (20, alphabet=IUPACAmbiguousDNA(), character=’N’)
>>> unk_dna.complement ()

UnknownSeq (20, alphabet=IUPACAmbiguousDNA(), character=’N’)
>>> unk_dna.reverse_complement ()

UnknownSeq (20, alphabet=IUPACAmbiguousDNA(), character=’N’)
>>> unk_dna.transcribe()

UnknownSeq (20, alphabet=IUPACAmbiguousRNA(), character=’N’)
>>> unk_protein = unk_dna.translate()

>>> unk_protein

UnknownSeq(6, alphabet=ProteinAlphabet(), character=’X’)
>>> print(unk_protein)

XXXXXX

>>> len(unk_protein)

6

You may be able to find a use for the UnknownSeq object in your own code, but it is more likely that you
will first come across them in a SeqRecord object created by Bio.SeqI0 (see Chapter 5). Some sequence file
formats don’t always include the actual sequence, for example GenBank and EMBL files may include a list
of features but for the sequence just present the contig information. Alternatively, the QUAL files used in
sequencing work hold quality scores but they never contain a sequence — instead there is a partner FASTA
file which does have the sequence.
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3.14 Working with strings directly

To close this chapter, for those you who really don’t want to use the sequence objects (or who prefer a
functional programming style to an object orientated one), there are module level functions in Bio.Seq will
accept plain Python strings, Seq objects (including UnknownSeq objects) or MutableSeq objects:

>>> from Bio.Seq import reverse_complement, transcribe, back_transcribe, translate
>>> my_string = "GCTGTTATGGGTCGTTGGAAGGGTGGTCGTGCTGCTGGTTAG"

>>> reverse_complement (my_string)

>CTAACCAGCAGCACGACCACCCTTCCAACGACCCATAACAGC’

>>> transcribe(my_string)

> GCUGUUAUGGGUCGUUGGAAGGGUGGUCGUGCUGCUGGUUAG’

>>> back_transcribe (my_string)

?GCTGTTATGGGTCGTTGGAAGGGTGGTCGTGCTGCTGGTTAG’

>>> translate(my_string)

> AVMGRWKGGRAAG*’

You are, however, encouraged to work with Seq objects by default.
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Chapter 4

Sequence annotation objects

Chapter 3 introduced the sequence classes. Immediately “above” the Seq class is the Sequence Record or
SeqRecord class, defined in the Bio.SeqRecord module. This class allows higher level features such as
identifiers and features (as SeqFeature objects) to be associated with the sequence, and is used throughout
the sequence input/output interface Bio.SeqI0 described fully in Chapter 5.

If you are only going to be working with simple data like FASTA files, you can probably skip this chapter
for now. If on the other hand you are going to be using richly annotated sequence data, say from GenBank
or EMBL files, this information is quite important.

While this chapter should cover most things to do with the SeqRecord and SeqFeature objects in this
chapter, you may also want to read the SeqRecord wiki page (http://biopython.org/wiki/SeqRecord),
and the built in documentation (also online — SeqRecord and SeqFeature):

>>> from Bio.SeqRecord import SeqRecord
>>> help(SeqRecord)

4.1 The SeqRecord object

The SeqRecord (Sequence Record) class is defined in the Bio.SeqRecord module. This class allows higher
level features such as identifiers and features to be associated with a sequence (see Chapter 3), and is the
basic data type for the Bio.SeqI0 sequence input/output interface (see Chapter 5).

The SeqRecord class itself is quite simple, and offers the following information as attributes:

.seq — The sequence itself, typically a Seq object.

.id — The primary ID used to identify the sequence — a string. In most cases this is something like an
accession number.

.name — A “common” name/id for the sequence — a string. In some cases this will be the same as the
accession number, but it could also be a clone name. I think of this as being analogous to the LOCUS
id in a GenBank record.

.description — A human readable description or expressive name for the sequence — a string.

Jetter_annotations — Holds per-letter-annotations using a (restricted) dictionary of additional information
about the letters in the sequence. The keys are the name of the information, and the information is
contained in the value as a Python sequence (i.e. a list, tuple or string) with the same length as
the sequence itself. This is often used for quality scores (e.g. Section 20.1.6) or secondary structure
information (e.g. from Stockholm/PFAM alignment files).
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.annotations — A dictionary of additional information about the sequence. The keys are the name of
the information, and the information is contained in the value. This allows the addition of more
“unstructured” information to the sequence.

features — A list of SeqFeature objects with more structured information about the features on a sequence
(e.g. position of genes on a genome, or domains on a protein sequence). The structure of sequence
features is described below in Section 4.3.

.dbxrefs - A list of database cross-references as strings.

4.2 Creating a SeqRecord

Using a SeqRecord object is not very complicated, since all of the information is presented as attributes of
the class. Usually you won’t create a SeqRecord “by hand”, but instead use Bio.SeqI0 to read in a sequence
file for you (see Chapter 5 and the examples below). However, creating SeqRecord can be quite simple.

4.2.1 SeqRecord objects from scratch

To create a SeqRecord at a minimum you just need a Seq object:

>>> from Bio.Seq import Seq
>>> simple_seq = Seq("GATC")
>>> from Bio.SeqRecord import SeqRecord
>>> simple_seq_r = SeqRecord(simple_seq)

Additionally, you can also pass the id, name and description to the initialization function, but if not they
will be set as strings indicating they are unknown, and can be modified subsequently:

>>> simple_seq_r.id

’<unknown id>’

>>> simple_seq_r.id = "AC12345"

>>> simple_seq_r.description = "Made up sequence I wish I could write a paper about"
>>> print(simple_seq_r.description)

Made up sequence I wish I could write a paper about

>>> simple_seq_r.seq

Seq(’GATC?)

Including an identifier is very important if you want to output your SeqRecord to a file. You would
normally include this when creating the object:

>>> from Bio.Seq import Seq

>>> simple_seq = Seq("GATC")

>>> from Bio.SeqRecord import SeqRecord

>>> simple_seq_r = SeqRecord(simple_seq, id="AC12345")

As mentioned above, the SeqRecord has an dictionary attribute annotations. This is used for any
miscellaneous annotations that doesn’t fit under one of the other more specific attributes. Adding annotations
is easy, and just involves dealing directly with the annotation dictionary:

>>> simple_seq_r.annotations["evidence"] = "None. I just made it up."
>>> print(simple_seq_r.annotations)
{’evidence’: ’None. I just made it up.’}

>>> print(simple_seq_r.annotations["evidence"])
None. I just made it up.
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Working with per-letter-annotations is similar, letter_annotations is a dictionary like attribute which
will let you assign any Python sequence (i.e. a string, list or tuple) which has the same length as the sequence:

>>> simple_seq_r.letter_annotations["phred_quality"] = [40, 40, 38, 30]
>>> print(simple_seq_r.letter_annotations)

{’phred_quality’: [40, 40, 38, 30]}

>>> print(simple_seq_r.letter_annotations["phred_quality"])

[40, 40, 38, 30]

The dbxrefs and features attributes are just Python lists, and should be used to store strings and
SeqFeature objects (discussed later in this chapter) respectively.

4.2.2 SeqRecord objects from FASTA files

This example uses a fairly large FASTA file containing the whole sequence for Yersinia pestis biovar Microtus
str. 91001 plasmid pPCP1, originally downloaded from the NCBI. This file is included with the Biopython
unit tests under the GenBank folder, or online NC_005816.fna from our website.

The file starts like this - and you can check there is only one record present (i.e. only one line starting
with a greater than symbol):

>gi|45478711|ref INC_005816.1| Yersinia pestis biovar Microtus ... pPCP1, complete sequence
TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGGGGGTAATCTGCTCTCC

Back in Chapter 2 you will have seen the function Bio.SeqIO.parse(...) used to loop over all the
records in a file as SeqRecord objects. The Bio.SeqI0 module has a sister function for use on files which
contain just one record which we’ll use here (see Chapter 5 for details):

>>> from Bio import SeqlO

>>> record = SeqlO.read("NC_005816.fna", "fasta'")

>>> record

SeqRecord (seq=Seq(’ TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG. . .CTG’,
SingleLetterAlphabet()), id=’gi|45478711|ref|NC_005816.1|°, name=’gi|45478711|ref|NC_005816.1]",
description=’gi|45478711|ref |NC_005816.1| Yersinia pestis biovar Microtus ... sequence’,
dbxrefs=[])

Now, let’s have a look at the key attributes of this SeqRecord individually — starting with the seq
attribute which gives you a Seq object:

>>> record.seq
Seq(’ TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG. . .CTG’, SingleLetterAlphabet())

Here Bio.SeqI0 has defaulted to a generic alphabet, rather than guessing that this is DNA. If you know in
advance what kind of sequence your FASTA file contains, you can tell Bio.SeqI0 which alphabet to use (see
Chapter 5).

Next, the identifiers and description:

>>> record.id

’gi|45478711 | ref INC_005816.1]°

>>> record.name

’gi|45478711|ref INC_005816.1]"

>>> record.description

’gi|45478711|ref INC_005816.1| Yersinia pestis biovar Microtus ... pPCP1, complete sequence’
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As you can see above, the first word of the FASTA record’s title line (after removing the greater than
symbol) is used for both the id and name attributes. The whole title line (after removing the greater than
symbol) is used for the record description. This is deliberate, partly for backwards compatibility reasons,
but it also makes sense if you have a FASTA file like this:

>Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1
TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGGGGGTAATCTGCTCTCC

Note that none of the other annotation attributes get populated when reading a FASTA file:

>>> record.dbxrefs

(]

>>> record.annotations

{>

>>> record.letter_annotations
{r

>>> record.features

(]

In this case our example FASTA file was from the NCBI, and they have a fairly well defined set of
conventions for formatting their FASTA lines. This means it would be possible to parse this information
and extract the GI number and accession for example. However, FASTA files from other sources vary, so
this isn’t possible in general.

4.2.3 SeqRecord objects from GenBank files

As in the previous example, we’re going to look at the whole sequence for Yersinia pestis biovar Microtus
str. 91001 plasmid pPCP1, originally downloaded from the NCBI, but this time as a GenBank file. Again,
this file is included with the Biopython unit tests under the GenBank folder, or online NC_005816.gb from
our website.

This file contains a single record (i.e. only one LOCUS line) and starts:

LOCUS NC_005816 9609 bp DNA circular BCT 21-JUL-2008

DEFINITION Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete
sequence.

ACCESSION  NC_005816

VERSION NC_005816.1 GI:45478711

PROJECT GenomeProject:10638

Again, we’ll use Bio.SeqI0 to read this file in, and the code is almost identical to that for used above
for the FASTA file (see Chapter 5 for details):

>>> from Bio import SeqIO

>>> record = SeqI0.read("NC_005816.gb", "genbank")

>>> record

SeqRecord(seq=Seq(’ TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG. . .CTG’,
IUPACAmbiguousDNA()), id=’NC_005816.1’, name=’NC_005816",

description=’Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete sequence.’,
dbxrefs=[’Project:10638°])

You should be able to spot some differences already! But taking the attributes individually, the sequence
string is the same as before, but this time Bio.SeqI0 has been able to automatically assign a more specific
alphabet (see Chapter 5 for details):
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>>> record.seq
Seq(’ TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG. . .CTG’, IUPACAmbiguousDNA())

The name comes from the LOCUS line, while the id includes the version suffix. The description comes
from the DEFINITION line:

>>> record.id

’NC_005816.1"

>>> record.name

’NC_005816"

>>> record.description

’Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete sequence.’

GenBank files don’t have any per-letter annotations:

>>> record.letter_annotations

{r
Most of the annotations information gets recorded in the annotations dictionary, for example:

>>> len(record.annotations)

11

>>> record.annotations["source"]

’Yersinia pestis biovar Microtus str. 91001’

The dbxrefs list gets populated from any PROJECT or DBLINK lines:

>>> record.dbxrefs
[’Project:10638°]

Finally, and perhaps most interestingly, all the entries in the features table (e.g. the genes or CDS
features) get recorded as SeqFeature objects in the features list.

>>> len(record.features)
29

We'll talk about SeqFeature objects next, in Section 4.3.

4.3 Feature, location and position objects

4.3.1 SeqFeature objects

Sequence features are an essential part of describing a sequence. Once you get beyond the sequence itself,
you need some way to organize and easily get at the more “abstract” information that is known about
the sequence. While it is probably impossible to develop a general sequence feature class that will cover
everything, the Biopython SeqFeature class attempts to encapsulate as much of the information about the
sequence as possible. The design is heavily based on the GenBank/EMBL feature tables, so if you understand
how they look, you’ll probably have an easier time grasping the structure of the Biopython classes.

The key idea about each SeqFeature object is to describe a region on a parent sequence, typically a
SegRecord object. That region is described with a location object, typically a range between two positions
(see Section 4.3.2 below).

The SeqFeature class has a number of attributes, so first we’ll list them and their general features,
and then later in the chapter work through examples to show how this applies to a real life example. The
attributes of a SeqFeature are:
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.type — This is a textual description of the type of feature (for instance, this will be something like ‘CDS’
or ‘gene’).

Jdocation — The location of the SeqFeature on the sequence that you are dealing with, see Section 4.3.2
below. The SeqFeature delegates much of its functionality to the location object, and includes a
number of shortcut attributes for properties of the location:

.ref — shorthand for .location.ref — any (different) reference sequence the location is referring to.
Usually just None.

.ref_db — shorthand for .location.ref_db — specifies the database any identifier in .ref refers to.
Usually just None.

.strand — shorthand for .location.strand — the strand on the sequence that the feature is located
on. For double stranded nucleotide sequence this may either be 1 for the top strand, —1 for the
bottom strand, 0 if the strand is important but is unknown, or None if it doesn’t matter. This is
None for proteins, or single stranded sequences.

.qualifiers — This is a Python dictionary of additional information about the feature. The key is some kind
of terse one-word description of what the information contained in the value is about, and the value is
the actual information. For example, a common key for a qualifier might be “evidence” and the value
might be “computational (non-experimental).” This is just a way to let the person who is looking at
the feature know that it has not be experimentally (i. e. in a wet lab) confirmed. Note that other the
value will be a list of strings (even when there is only one string). This is a reflection of the feature
tables in GenBank/EMBL files.

.sub_features — This used to be used to represent features with complicated locations like ‘joins’ in Gen-
Bank/EMBL files. This has been deprecated with the introduction of the CompoundLocation object,
and should now be ignored.

4.3.2 Positions and locations

The key idea about each SeqFeature object is to describe a region on a parent sequence, for which we use a
location object, typically describing a range between two positions. Two try to clarify the terminology we’re
using:

position — This refers to a single position on a sequence, which may be fuzzy or not. For instance, 5, 20,
<100 and >200 are all positions.

location — A location is region of sequence bounded by some positions. For instance 5..20 (i. e. 5 to 20) is
a location.

I just mention this because sometimes I get confused between the two.

4.3.2.1 FeatureLocation object

Unless you work with eukaryotic genes, most SeqFeature locations are extremely simple - you just need
start and end coordinates and a strand. That’s essentially all the basic FeatureLocation object does.

In practise of course, things can be more complicated. First of all we have to handle compound locations
made up of several regions. Secondly, the positions themselves may be fuzzy (inexact).

4.3.2.2 CompoundLocation object

Biopython 1.62 introduced the CompoundLocation as part of a restructuring of how complex locations made
up of multiple regions are represented. The main usage is for handling ‘join’ locations in EMBL/GenBank
files.
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4.3.2.3 Fuzzy Positions

So far we’ve only used simple positions. One complication in dealing with feature locations comes in the
positions themselves. In biology many times things aren’t entirely certain (as much as us wet lab biologists
try to make them certain!). For instance, you might do a dinucleotide priming experiment and discover that
the start of mRNA transcript starts at one of two sites. This is very useful information, but the complication
comes in how to represent this as a position. To help us deal with this, we have the concept of fuzzy positions.
Basically there are several types of fuzzy positions, so we have five classes do deal with them:

ExactPosition — As its name suggests, this class represents a position which is specified as exact along
the sequence. This is represented as just a number, and you can get the position by looking at the
position attribute of the object.

BeforePosition — This class represents a fuzzy position that occurs prior to some specified site. In Gen-
Bank/EMBL notation, this is represented as something like ‘<13”, signifying that the real position is
located somewhere less than 13. To get the specified upper boundary, look at the position attribute
of the object.

AfterPosition — Contrary to BeforePosition, this class represents a position that occurs after some spec-
ified site. This is represented in GenBank as ‘>13’, and like BeforePosition, you get the boundary
number by looking at the position attribute of the object.

WithinPosition — Occasionally used for GenBank/EMBL locations, this class models a position which
occurs somewhere between two specified nucleotides. In GenBank/EMBL notation, this would be
represented as ‘(1.5)’, to represent that the position is somewhere within the range 1 to 5. To get the
information in this class you have to look at two attributes. The position attribute specifies the lower
boundary of the range we are looking at, so in our example case this would be one. The extension
attribute specifies the range to the higher boundary, so in this case it would be 4. So object.position
is the lower boundary and object.position + object.extension is the upper boundary.

OneOfPosition — Occasionally used for GenBank/EMBL locations, this class deals with a position where
several possible values exist, for instance you could use this if the start codon was unclear and there
where two candidates for the start of the gene. Alternatively, that might be handled explicitly as two
related gene features.

UnknownPosition — This class deals with a position of unknown location. This is not used in Gen-
Bank/EMBL, but corresponds to the ‘?” feature coordinate used in UniProt.

Here’s an example where we create a location with fuzzy end points:

>>> from Bio import SegFeature

>>> start_pos = SeqFeature.AfterPosition(5)

>>> end_pos = SeqFeature.BetweenPosition(9, left=8, right=9)
>>> my_location = SeqFeature.FeatureLocation(start_pos, end_pos)

Note that the details of some of the fuzzy-locations changed in Biopython 1.59, in particular for Between-
Position and WithinPosition you must now make it explicit which integer position should be used for slicing
etc. For a start position this is generally the lower (left) value, while for an end position this would generally
be the higher (right) value.

If you print out a FeatureLocation object, you can get a nice representation of the information:

>>> print(my_location)
[>5:(879)]

We can access the fuzzy start and end positions using the start and end attributes of the location:
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>>> my_location.start
AfterPosition(5)

>>> print(my_location.start)

>5

>>> my_location.end
BetweenPosition(9, left=8, right=9)
>>> print(my_location.end)

(879)

If you don’t want to deal with fuzzy positions and just want numbers, they are actually subclasses of
integers so should work like integers:

>>> int(my_location.start)
5

>>> int(my_location.end)
9

For compatibility with older versions of Biopython you can ask for the nofuzzy_start and nofuzzy_end
attributes of the location which are plain integers:

>>> my_location.nofuzzy_start
5

>>> my_location.nofuzzy_end

9

Notice that this just gives you back the position attributes of the fuzzy locations.
Similarly, to make it easy to create a position without worrying about fuzzy positions, you can just pass
in numbers to the FeaturePosition constructors, and you’ll get back out ExactPosition objects:

>>> exact_location = SeqFeature.FeaturelLocation(5, 9)
>>> print(exact_location)

[5:9]

>>> exact_location.start

ExactPosition(5)

>>> int(exact_location.start)

5

>>> exact_location.nofuzzy_start

5

That is most of the nitty gritty about dealing with fuzzy positions in Biopython. It has been designed
so that dealing with fuzziness is not that much more complicated than dealing with exact positions, and
hopefully you find that true!

4.3.2.4 Location testing

You can use the Python keyword in with a SeqFeature or location object to see if the base/residue for a
parent coordinate is within the feature/location or not.

For example, suppose you have a SNP of interest and you want to know which features this SNP is
within, and lets suppose this SNP is at index 4350 (Python counting!). Here is a simple brute force solution
where we just check all the features one by one in a loop:

>>> from Bio import SeqIO
>>> my_snp = 4350
>>> record = Seql0.read("NC_005816.gb", "genbank")
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>>> for feature in record.features:
if my_snp in feature:
print("%s %s" 7% (feature.type, feature.qualifiers.get("db_xref")))

source [’taxon:229193°]
gene [’GenelID:2767712°]
CDS [’GI:45478716°, ’GenelD:2767712°]

Note that gene and CDS features from GenBank or EMBL files defined with joins are the union of the
exons — they do not cover any introns.

4.3.3 Sequence described by a feature or location

A SeqFeature or location object doesn’t directly contain a sequence, instead the location (see Section 4.3.2)
describes how to get this from the parent sequence. For example consider a (short) gene sequence with
location 5:18 on the reverse strand, which in GenBank/EMBL notation using 1-based counting would be
complement (6. .18), like this:

>>> from Bio.Seq import Seq

>>> from Bio.SeqFeature import SeqFeature, FeaturelLocation

>>> example_parent = Seq("ACCGAGACGGCAAAGGCTAGCATAGGTATGAGACTTCCTTCCTGCCAGTGCTGAGGAACTGGGAGCCTAC")
>>> example_feature = SeqFeature(FeatureLocation(5, 18), type="gene", strand=-1)

You could take the parent sequence, slice it to extract 5:18, and then take the reverse complement. If
you are using Biopython 1.59 or later, the feature location’s start and end are integer like so this works:

>>> feature_seq = example_parent [example_feature.location.start:example_feature.location.end].reverse_ci
>>> print(feature_seq)
AGCCTTTGCCGTC

This is a simple example so this isn’t too bad — however once you have to deal with compound features
(joins) this is rather messy. Instead, the SeqFeature object has an extract method to take care of all this:

>>> feature_seq = example_feature.extract(example_parent)
>>> print(feature_seq)
AGCCTTTGCCGTC

The length of a SeqFeature or location matches that of the region of sequence it describes.

>>> print(example_feature.extract (example_parent))
AGCCTTTGCCGTC

>>> print(len(example_feature.extract(example_parent)))
13

>>> print(len(example_feature))

13

>>> print(len(example_feature.location))

13

For simple FeatureLocation objects the length is just the difference between the start and end positions.
However, for a CompoundLocation the length is the sum of the constituent regions.
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4.4 Comparison
The SeqRecord objects can be very complex, but here’s a simple example:

>>> from Bio.Seq import Seq

>>> from Bio.SeqRecord import SeqRecord

>>> recordl = SeqRecord(Seq("ACGT"), id="test")
>>> record2 = SeqRecord(Seq("ACGT"), id="test")

What happens when you try to compare these “identical” records?

>>> recordl == record2

Perhaps surprisingly older versions of Biopython would use Python’s default object comparison for the
SeqRecord, meaning recordl == record2 would only return True if these variables pointed at the same
object in memory. In this example, recordl == record2 would have returned False here!

>>> recordl == record2 # on old versions of Biopython!
False

As of Biopython 1.67, SeqRecord comparison like recordl == record2 will instead raise an explicit
error to avoid people being caught out by this:

>>> recordl == record2
Traceback (most recent call last):

NotImplementedError: SeqRecord comparison is deliberately not implemented. Explicitly compare the attri

Instead you should check the attributes you are interested in, for example the identifier and the sequence:

>>> recordl.id == record2.id
True

>>> recordl.seq == record2.seq
True

Beware that comparing complex objects quickly gets complicated (see also Section 3.11).

4.5 References

Another common annotation related to a sequence is a reference to a journal or other published work
dealing with the sequence. We have a fairly simple way of representing a Reference in Biopython — we have
a Bio.SeqFeature.Reference class that stores the relevant information about a reference as attributes of
an object.

The attributes include things that you would expect to see in a reference like journal, title and
authors. Additionally, it also can hold the medline_id and pubmed_id and a comment about the reference.
These are all accessed simply as attributes of the object.

A reference also has a location object so that it can specify a particular location on the sequence that
the reference refers to. For instance, you might have a journal that is dealing with a particular gene located
on a BAC, and want to specify that it only refers to this position exactly. The location is a potentially
fuzzy location, as described in section 4.3.2.

Any reference objects are stored as a list in the SeqRecord object’s annotations dictionary under the
key “references”. That’s all there is too it. References are meant to be easy to deal with, and hopefully
general enough to cover lots of usage cases.
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4.6 The format method

The format () method of the SeqRecord class gives a string containing your record formatted using one of
the output file formats supported by Bio.SeqIO, such as FASTA:

from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
from Bio.Alphabet import generic_protein

record = SeqRecord(

Seq(
"MMYQQGCFAGGTVLRLAKDLAENNRGARVLVVCSEITAVTFRGPSETHLDSMVGQALFGD"
"GAGAVIVGSDPDLSVERPLYELVWTGATLLPDSEGAIDGHLREVGLTFHLLKDVPGLISK"
"NIEKSLKEAFTPLGISDWNSTFWIAHPGGPAILDQVEAKLGLKEEKMRATREVLSEYGNM"
"SSAC",
generic_protein,

),

id="gi|14150838|gb|AAK54648.1|AF376133_1",

description="chalcone synthase [Cucumis sativus]",

print(record.format("fasta"))

which should give:

>gi|14150838|gb|AAK54648.1|AF376133_1 chalcone synthase [Cucumis sativus]
MMYQQGCFAGGTVLRLAKDLAENNRGARVLVVCSEITAVTFRGPSETHLDSMVGQALFGD
GAGAVIVGSDPDLSVERPLYELVWTGATLLPDSEGAIDGHLREVGLTFHLLKDVPGLISK
NIEKSLKEAFTPLGISDWNSTFWIAHPGGPAILDQVEAKLGLKEEKMRATREVLSEYGNM

SSAC

This format method takes a single mandatory argument, a lower case string which is supported by
Bio.SeqI0 as an output format (see Chapter 5). However, some of the file formats Bio.SeqI0 can write to
require more than one record (typically the case for multiple sequence alignment formats), and thus won’t
work via this format () method. See also Section 5.5.4.

4.7 Slicing a SeqRecord

You can slice a SeqRecord, to give you a new SeqRecord covering just part of the sequence. What is
important here is that any per-letter annotations are also sliced, and any features which fall completely
within the new sequence are preserved (with their locations adjusted).

For example, taking the same GenBank file used earlier:

>>> from Bio import SeqIO
>>> record = SeqlI0.read("NC_005816.gb", "genbank")

>>> record

SeqRecord (seq=Seq(’ TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG. . .CTG’,
IUPACAmbiguousDNA()), id=’NC_005816.1’, name=’NC_005816",

description=’Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1l, complete sequence’,
dbxrefs=[’Project:58037’])
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>>> len(record)

9609

>>> len(record.features)
41

For this example we're going to focus in on the pim gene, YP_pPCPO05. If you have a look at the GenBank
file directly you’ll find this gene/CDS has location string 4343..4780, or in Python counting 4342:4780.
From looking at the file you can work out that these are the twelfth and thirteenth entries in the file, so in
Python zero-based counting they are entries 11 and 12 in the features list:

>>> print(record.features[20])
type: gene
location: [4342:4780] (+)
qualifiers:
Key: db_xref, Value: [’GenelD:2767712’]
Key: gene, Value: [’pim’]
Key: locus_tag, Value: [’YP_pPCP05’]
<BLANKLINE>

>>> print(record.features[21])
type: CDS
location: [4342:4780] (+)
qualifiers:
Key: codon_start, Value: [’1’]
Key: db_xref, Value: [’GI:45478716°, ’GeneID:2767712°]
Key: gene, Value: [’pim’]
Key: locus_tag, Value: [’YP_pPCP05’]
Key: note, Value: [’similar to many previously sequenced pesticin immunity ...’]
Key: product, Value: [’pesticin immunity protein’]
Key: protein_id, Value: [’NP_995571.1°]
Key: transl_table, Value: [’11°]
Key: translation, Value: [’MGGGMISKLFCLALIFLSSSGLAEKNTYTAKDILQNLELNTFGNSLSH...’]

Let’s slice this parent record from 4300 to 4800 (enough to include the pim gene/CDS), and see how
many features we get:

>>> sub_record = record[4300:4800]

>>> sub_record

SeqRecord(seq=Seq(’ ATAAATAGATTATTCCAAATAATTTATTTATGTAAGAACAGGATGGGAGGGGGA. . .TTA’,
IUPACAmbiguousDNA()), id=’NC_005816.1’, name=’NC_005816",

description=’Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete sequence.’,
dbxrefs=[])

>>> len(sub_record)

500

>>> len(sub_record.features)
2

Our sub-record just has two features, the gene and CDS entries for YP_pPCP05:
>>> print(sub_record.features[0])

type: gene
location: [42:480](+)
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qualifiers:
Key: db_xref, Value: [’GenelID:2767712’]
Key: gene, Value: [’pim’]
Key: locus_tag, Value: [’YP_pPCP05’]
<BLANKLINE>

>>> print(sub_record.features[1])
type: CDS
location: [42:480](+)
qualifiers:
Key: codon_start, Value: [’17]
Key: db_xref, Value: [’GI:45478716°, ’GenelD:2767712°]
Key: gene, Value: [’pim’]
Key: locus_tag, Value: [’YP_pPCP05’]
Key: note, Value: [’similar to many previously sequenced pesticin immunity ...’°]
Key: product, Value: [’pesticin immunity protein’]
Key: protein_id, Value: [’NP_995571.1°]
Key: transl_table, Value: [’11°]
Key: translation, Value: [’MGGGMISKLFCLALIFLSSSGLAEKNTYTAKDILQNLELNTFGNSLSH...’]

Notice that their locations have been adjusted to reflect the new parent sequence!

While Biopython has done something sensible and hopefully intuitive with the features (and any per-
letter annotation), for the other annotation it is impossible to know if this still applies to the sub-sequence
or not. To avoid guessing, the annotations and dbxrefs are omitted from the sub-record, and it is up to
you to transfer any relevant information as appropriate.

>>> sub_record.annotations

{3

>>> sub_record.dbxrefs

(]

The same point could be made about the record id, name and description, but for practicality these
are preserved:

>>> sub_record.id

’NC_005816.1°

>>> sub_record.name

’NC_005816"

>>> sub_record.description

’Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete sequence’

This illustrates the problem nicely though, our new sub-record is not the complete sequence of the plasmid,
so the description is wrong! Let’s fix this and then view the sub-record as a reduced GenBank file using the
format method described above in Section 4.6:

>>> sub_record.description = "Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, partial."
>>> print(sub_record.format ("genbank"))
See Sections 20.1.7 and 20.1.8 for some FASTQ examples where the per-letter annotations (the read

quality scores) are also sliced.
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4.8 Adding SeqRecord objects

You can add SeqRecord objects together, giving a new SeqRecord. What is important here is that any
common per-letter annotations are also added, all the features are preserved (with their locations adjusted),
and any other common annotation is also kept (like the id, name and description).

For an example with per-letter annotation, we’ll use the first record in a FASTQ file. Chapter 5 will
explain the SeqI0 functions:

>>> from Bio import SeqlO

>>> record = next(Seql0.parse("example.fastq", "fastq"))
>>> len(record)

25

>>> print(record.seq)

CCCTTCTTGTCTTCAGCGTTTCTCC

>>> print(record.letter_annotations["phred_quality"])
(26, 26, 18, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 22, 26, 26, 26, 26,
26, 26, 26, 23, 23]

Let’s suppose this was Roche 454 data, and that from other information you think the TTT should be only
TT. We can make a new edited record by first slicing the SeqRecord before and after the “extra” third T:

>>> left = record[:20]

>>> print(left.seq)

CCCTTCTTGTCTTCAGCGTT

>>> print(left.letter_annotations["phred_quality"])

(26, 26, 18, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 22, 26, 26, 26, 26]
>>> right = record[21:]

>>> print(right.seq)

CTCC

>>> print(right.letter_annotations["phred_quality"])

[26, 26, 23, 23]

Now add the two parts together:

>>> edited = left + right
>>> len(edited)

24

>>> print(edited.seq)
CCCTTCTTGTCTTCAGCGTTCTCC

>>> print(edited.letter_annotations["phred_quality"])

(26, 26, 18, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 22, 26, 26, 26, 26,
26, 26, 23, 23]

Easy and intuitive? We hope so! You can make this shorter with just:

>>> edited = record[:20] + record[21:]

Now, for an example with features, we’ll use a GenBank file. Suppose you have a circular genome:

>>> from Bio import SeqIO
>>> record = SeqIO.read("NC_005816.gb", "genbank")
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>>> record

SeqRecord (seq=Seq(’ TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG. . .CTG’,
IUPACAmbiguousDNA()), id=’NC_005816.1’, name=’NC_005816",

description=’Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete sequence.’,
dbxrefs=[’Project:10638°])

>>> len(record)

9609

>>> len(record.features)
41

>>> record.dbxrefs
[’Project:58037"]

>>> record.annotations.keys()
[’comment’, ’sequence_version’, ’source’, ’taxonomy’, ’keywords’, ’references’,
’accessions’, ’data_file_division’, ’date’, ’organism’, ’gi’]

You can shift the origin like this:
>>> shifted = record[2000:] + record[:2000]

>>> shifted

SeqRecord (seq=Seq(’GATACGCAGTCATATTTTTTACACAATTCTCTAATCCCGACAAGGTCGTAGGTC. . .GGA’,
TUPACAmbiguousDNA()), id=’NC_005816.1’, name=’NC_005816",

description=’Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete sequence.’,
dbxrefs=[])

>>> len(shifted)
9609

Note that this isn’t perfect in that some annotation like the database cross references and one of the
features (the source feature) have been lost:

>>> len(shifted.features)

40

>>> shifted.dbxrefs

(]

>>> shifted.annotations.keys()

(]

This is because the SeqRecord slicing step is cautious in what annotation it preserves (erroneously
propagating annotation can cause major problems). If you want to keep the database cross references or the
annotations dictionary, this must be done explicitly:

>>> shifted.dbxrefs = record.dbxrefs[:]

>>> shifted.annotations = record.annotations.copy()

>>> shifted.dbxrefs

[’Project:10638’]

>>> shifted.annotations.keys()

[’comment’, ’sequence_version’, ’source’, ’taxonomy’, ’keywords’, ’references’,
’accessions’, ’data_file_division’, ’date’, ’organism’, ’gi’]

Also note that in an example like this, you should probably change the record identifiers since the NCBI
references refer to the original unmodified sequence.
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4.9 Reverse-complementing SeqRecord objects

One of the new features in Biopython 1.57 was the SeqRecord object’s reverse_complement method. This
tries to balance easy of use with worries about what to do with the annotation in the reverse complemented
record.

For the sequence, this uses the Seq object’s reverse complement method. Any features are transferred with
the location and strand recalculated. Likewise any per-letter-annotation is also copied but reversed (which
makes sense for typical examples like quality scores). However, transfer of most annotation is problematical.

For instance, if the record ID was an accession, that accession should not really apply to the reverse
complemented sequence, and transferring the identifier by default could easily cause subtle data corruption
in downstream analysis. Therefore by default, the SeqRecord’s id, name, description, annotations and
database cross references are all not transferred by default.

The SeqRecord object’s reverse_complement method takes a number of optional arguments correspond-
ing to properties of the record. Setting these arguments to True means copy the old values, while False
means drop the old values and use the default value. You can alternatively provide the new desired value
instead.

Consider this example record:

>>> from Bio import SeqlO

>>> record = Seql0.read("NC_005816.gb", "genbank")

>>> print("Y%s %i %i i Ji" % (record.id, len(record), len(record.features), len(record.dbxrefs), len(re
NC_005816.1 9609 41 1 13

Here we take the reverse complement and specify a new identifier — but notice how most of the annotation
is dropped (but not the features):

>>> rc = record.reverse_complement (id="TESTING")
>>> print("Ys %i i i %i" % (rc.id, len(rc), len(rc.features), len(rc.dbxrefs), len(rc.annotations)))
TESTING 9609 41 0 O
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Chapter 5

Sequence Input/Output

In this chapter we’ll discuss in more detail the Bio.SeqI0 module, which was briefly introduced in Chapter 2
and also used in Chapter 4. This aims to provide a simple interface for working with assorted sequence file
formats in a uniform way. See also the Bio.SeqI0 wiki page (http://biopython.org/wiki/SeqI0), and
the built in documentation (also online):

>>> from Bio import SeqlO
>>> help(SeqlI0)

The “catch” is that you have to work with SeqRecord objects (see Chapter 4), which contain a Seq
object (see Chapter 3) plus annotation like an identifier and description. Note that when dealing with very
large FASTA or FASTQ files, the overhead of working with all these objects can make scripts too slow. In
this case consider the low-level SimpleFastaParser and FastqGeneralIterator parsers which return just
a tuple of strings for each record (see Section 5.6).

5.1 Parsing or Reading Sequences

The workhorse function Bio.SeqI0.parse() is used to read in sequence data as SeqRecord objects. This
function expects two arguments:

1. The first argument is a handle to read the data from, or a filename. A handle is typically a file opened
for reading, but could be the output from a command line program, or data downloaded from the
internet (see Section 5.3). See Section 24.1 for more about handles.

2. The second argument is a lower case string specifying sequence format — we don’t try and guess the
file format for you! See http://biopython.org/wiki/Seql0 for a full listing of supported formats.

There is an optional argument alphabet to specify the alphabet to be used. This is useful for file formats
like FASTA where otherwise Bio.SeqI0 will default to a generic alphabet.

The Bio.SeqIO.parse() function returns an iterator which gives SeqRecord objects. Iterators are
typically used in a for loop as shown below.

Sometimes you’ll find yourself dealing with files which contain only a single record. For this situation
use the function Bio.SeqI0.read() which takes the same arguments. Provided there is one and only one
record in the file, this is returned as a SeqRecord object. Otherwise an exception is raised.
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5.1.1 Reading Sequence Files

In general Bio.SeqI0.parse() is used to read in sequence files as SeqRecord objects, and is typically used
with a for loop like this:

from Bio import SeqlO

for seq_record in SeqI0.parse("ls_orchid.fasta", "fasta"):
print(seq_record.id)
print (repr(seq_record.seq))
print (len(seq_record))

The above example is repeated from the introduction in Section 2.4, and will load the orchid DNA
sequences in the FASTA format file Is_orchid.fasta. If instead you wanted to load a GenBank format file like
Is_orchid.gbk then all you need to do is change the filename and the format string:

from Bio import SeqlO

for seq_record in SeqI0.parse("ls_orchid.gbk", "genbank"):
print(seq_record.id)
print (repr(seq_record.seq))
print(len(seq_record))

Similarly, if you wanted to read in a file in another file format, then assuming Bio.SeqI0.parse()
supports it you would just need to change the format string as appropriate, for example “swiss” for SwissProt
files or “embl” for EMBL text files. There is a full listing on the wiki page (http://biopython.org/wiki/
SeqI0) and in the built in documentation (also online).

Another very common way to use a Python iterator is within a list comprehension (or a generator
expression). For example, if all you wanted to extract from the file was a list of the record identifiers we can
easily do this with the following list comprehension:

>>> from Bio import SeqlO

>>> identifiers = [seq_record.id for seq_record in SeqI0.parse("ls_orchid.gbk", "genbank")]
>>> identifiers

[’Z78533.1°, °Z78532.1’, *Z78531.1°, ’Z78530.1°, ’Z78529.1°, °Z78527.1°, ..., ’Z78439.1°]

There are more examples using SeqI0.parse() in a list comprehension like this in Section 20.2 (e.g. for
plotting sequence lengths or GC%).

5.1.2 TIterating over the records in a sequence file

In the above examples, we have usually used a for loop to iterate over all the records one by one. You can use
the for loop with all sorts of Python objects (including lists, tuples and strings) which support the iteration
interface.

The object returned by Bio.SeqIO0 is actually an iterator which returns SeqRecord objects. You get to
see each record in turn, but once and only once. The plus point is that an iterator can save you memory
when dealing with large files.

Instead of using a for loop, can also use the next () function on an iterator to step through the entries,
like this:

from Bio import SeqIO

record_iterator = SeqIO0.parse("ls_orchid.fasta", "fasta")
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first_record = next(record_iterator)
print (first_record.id)
print(first_record.description)

second_record = next(record_iterator)
print (second_record.id)
print(second_record.description)

Note that if you try to use next() and there are no more results, you’ll get the special StopIteration
exception.

One special case to consider is when your sequence files have multiple records, but you only want the
first one. In this situation the following code is very concise:

from Bio import SeqlO

first_record = next(SeqlIO.parse("ls_orchid.gbk", "genbank"))

A word of warning here — using the next () function like this will silently ignore any additional records
in the file. If your files have one and only one record, like some of the online examples later in this chapter,
or a GenBank file for a single chromosome, then use the new Bio.SeqI0.read() function instead. This will
check there are no extra unexpected records present.

5.1.3 Getting a list of the records in a sequence file

In the previous section we talked about the fact that Bio.SeqI0.parse() gives you a SeqRecord iterator,
and that you get the records one by one. Very often you need to be able to access the records in any order.
The Python 1ist data type is perfect for this, and we can turn the record iterator into a list of SeqRecord
objects using the built-in Python function 1ist () like so:

from Bio import SeqlO
records = list(SeqI0.parse("ls_orchid.gbk", "genbank"))
print ("Found %i records" % len(records))

print ("The last record")

last_record = records[-1] # using Python’s list tricks
print (last_record.id)

print (repr(last_record.seq))

print(len(last_record))

print ("The first record")

first_record = records[0] # remember, Python counts from zero
print (first_record.id)

print (repr(first_record.seq))

print(len(first_record))

Giving:

Found 94 records

The last record

278439.1

Seq(’CATTGTTGAGATCACATAATAATTGATCGAGTTAATCTGGAGGATCTGTTTACT. . .GCC’, IUPACAmbiguousDNA())
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592

The first record

278533.1

Seq(’CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGG. . .CGC’, IUPACAmbiguousDNA())
740

You can of course still use a for loop with a list of SeqRecord objects. Using a list is much more flexible
than an iterator (for example, you can determine the number of records from the length of the list), but
does need more memory because it will hold all the records in memory at once.

5.1.4 Extracting data

The SeqRecord object and its annotation structures are described more fully in Chapter 4. As an example
of how annotations are stored, we’ll look at the output from parsing the first record in the GenBank file
Is_orchid.gbk.

from Bio import SeqlO

record_iterator = SeqIO.parse("ls_orchid.gbk", "genbank")
first_record = next(record_iterator)
print(first_record)

That should give something like this:

ID: Z78533.1

Name: Z78533

Description: C.irapeanum 5.83 rRNA gene and ITS1 and ITS2 DNA.

Number of features: 5

/sequence_version=1

/source=Cypripedium irapeanum

/taxonomy=[’Eukaryota’, ’Viridiplantae’, ’Streptophyta’, ..., ’Cypripedium’]
/keywords=[’5.8S ribosomal RNA’, ’5.8S rRNA gene’, ..., ’ITS1’, ’ITS2’]
/references=[...]

/accessions=[’Z78533"]

/data_file_division=PLN

/date=30-N0OV-2006

/organism=Cypripedium irapeanum

/gi=2765658
Seq(’CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGG. . .CGC’, IUPACAmbiguousDNA())

This gives a human readable summary of most of the annotation data for the SeqRecord. For this
example we’re going to use the .annotations attribute which is just a Python dictionary. The contents
of this annotations dictionary were shown when we printed the record above. You can also print them out
directly:

print (first_record.annotations)

Like any Python dictionary, you can easily get a list of the keys:
print (first_record.annotations.keys())

or values:

print(first_record.annotations.values())
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In general, the annotation values are strings, or lists of strings. One special case is any references in the
file get stored as reference objects.

Suppose you wanted to extract a list of the species from the ls_orchid.gbk GenBank file. The information
we want, Cypripedium irapeanum, is held in the annotations dictionary under ‘source’ and ‘organism’, which
we can access like this:

>>> print(first_record.annotations["source"])
Cypripedium irapeanum

or:

>>> print(first_record.annotations["organism"])
Cypripedium irapeanum

In general, ‘organism’ is used for the scientific name (in Latin, e.g. Arabidopsis thaliana), while ‘source’
will often be the common name (e.g. thale cress). In this example, as is often the case, the two fields are
identical.

Now let’s go through all the records, building up a list of the species each orchid sequence is from:

from Bio import SeqlO

all_species = []

for seq_record in SeqlIO0.parse("ls_orchid.gbk", "genbank"):
all_species.append(seq_record.annotations["organism"])

print (all_species)

Another way of writing this code is to use a list comprehension:

from Bio import SeqlIO

all_species = [

seq_record.annotations["organism"]

for seq_record in SeqIO.parse("ls_orchid.gbk", "genbank")
]

print(all_species)
In either case, the result is:
[’Cypripedium irapeanum’, ’Cypripedium californicum’, ..., ’Paphiopedilum barbatum’]

Great. That was pretty easy because GenBank files are annotated in a standardised way.

Now, let’s suppose you wanted to extract a list of the species from a FASTA file, rather than the
GenBank file. The bad news is you will have to write some code to extract the data you want from the
record’s description line - if the information is in the file in the first place! Our example FASTA format file
Is_orchid.fasta starts like this:

>gi|2765658|emb|Z78533.1|CIZ78533 C.irapeanum 5.85 rRNA gene and ITS1 and ITS2 DNA
CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGGAATAAACGATCGAGTG
AATCCGGAGGACCGGTGTACTCAGCTCACCGGGGGCATTGCTCCCGTGGTGACCCTGATTTGTTGTTGGG

You can check by hand, but for every record the species name is in the description line as the second
word. This means if we break up each record’s .description at the spaces, then the species is there as field
number one (field zero is the record identifier). That means we can do this:
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from Bio import SeqlO

all_species = []

for seq_record in Seql0.parse("ls_orchid.fasta", "fasta"):
all_species.append(seq_record.description.split() [1])

print(all_species)

This gives:
[’C.irapeanum’, ’C.californicum’, ’C.fasciculatum’, ’C.margaritaceum’, ..., ’P.barbatum’]
The concise alternative using list comprehensions would be:

from Bio import SeqlO

all_species == [

seq_record.description.split() [1]

for seq_record in SeqlIO.parse("ls_orchid.fasta", "fasta")
]

print(all_species)

In general, extracting information from the FASTA description line is not very nice. If you can get your
sequences in a well annotated file format like GenBank or EMBL, then this sort of annotation information
is much easier to deal with.

5.1.5 Modifying data

In the previous section, we demonstrated how to extract data from a SeqRecord. Another common task is
to alter this data. The attributes of a SeqRecord can be modified directly, for example:

>>> from Bio import SeqIO

>>> record_iterator = Seql0.parse("ls_orchid.fasta", "fasta'")
>>> first_record = next(record_iterator)

>>> first_record.id

’gi| 2765658 |emb|Z78533.1|CIZ78533

>>> first_record.id = "new_id"

>>> first_record.id

‘new_id’

Note, if you want to change the way FASTA is output when written to a file (see Section 5.5), then
you should modify both the id and description attributes. To ensure the correct behaviour, it is best to
include the id plus a space at the start of the desired description:

>>> from Bio import SeqIO

>>> record_iterator = Seql0.parse("ls_orchid.fasta", "fasta'")

>>> first_record = next(record_iterator)

>>> first_record.id = "new_id"

>>> first_record.description = first_record.id + " " + "desired new description"

>>> print(first_record.format("fasta") [:200])

>new_id desired new description
CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGGAATAAA
CGATCGAGTGAATCCGGAGGACCGGTGTACTCAGCTCACCGGGGGCATTGCTCCCGTGGT
GACCCTGATTTGTTGTTGGGCCGCCTCGGGAGCGTCCATGGCGGGT
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5.2 Parsing sequences from compressed files

In the previous section, we looked at parsing sequence data from a file. Instead of using a filename, you
can give Bio.SeqI0 a handle (see Section 24.1), and in this section we’ll use handles to parse sequence from
compressed files.

As you’ll have seen above, we can use Bio.SeqI0.read() or Bio.Seql0.parse() with a filename - for
instance this quick example calculates the total length of the sequences in a multiple record GenBank file
using a generator expression:

>>> from Bio import SeqlO
>>> print(sum(len(r) for r in SeqI0.parse("ls_orchid.gbk", "gb")))
67518

Here we use a file handle instead, using the with statement to close the handle automatically:

>>> from Bio import SeqIO

>>> with open("ls_orchid.gbk") as handle:

.. print(sum(len(r) for r in SeqIO.parse(handle, "gb")))
67518
Or, the old fashioned way where you manually close the handle:

>>> from Bio import SeqlO

>>> handle = open("ls_orchid.gbk")

>>> print(sum(len(r) for r in Seql0.parse(handle, "gb")))
67518

>>> handle.close()

Now, suppose we have a gzip compressed file instead? These are very commonly used on Linux. We can
use Python’s gzip module to open the compressed file for reading - which gives us a handle object:

>>> import gzip

>>> from Bio import SeqIO

>>> with gzip.open("ls_orchid.gbk.gz", "rt") as handle:
print(sum(len(r) for r in SeqI0.parse(handle, "gb")))

67518
Similarly if we had a bzip2 compressed file (sadly the function name isn’t quite as consistent under
Python 2):

>>> import bz2
>>> from Bio import SeqIO
>>> if hasattr(bz2, "open"):
handle = bz2.open("ls_orchid.gbk.bz2", "rt") # Python 3
. else:
handle = bz2.BZ2File("ls_orchid.gbk.bz2", "r") # Python 2

>>> with handle:
print(sum(len(r) for r in SeqIO.parse(handle, "gb")))
67518
There is a gzip (GNU Zip) variant called BGZF (Blocked GNU Zip Format), which can be treated like

an ordinary gzip file for reading, but has advantages for random access later which we’ll talk about later in
Section 5.4.4.
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5.3 Parsing sequences from the net

In the previous sections, we looked at parsing sequence data from a file (using a filename or handle), and
from compressed files (using a handle). Here we’ll use Bio.SeqI0 with another type of handle, a network
connection, to download and parse sequences from the internet.

Note that just because you can download sequence data and parse it into a SeqRecord object in one go
doesn’t mean this is a good idea. In general, you should probably download sequences once and save them
to a file for reuse.

5.3.1 Parsing GenBank records from the net

Section 9.6 talks about the Entrez EFetch interface in more detail, but for now let’s just connect to the
NCBI and get a few Opuntia (prickly-pear) sequences from GenBank using their GI numbers.

First of all, let’s fetch just one record. If you don’t care about the annotations and features downloading
a FASTA file is a good choice as these are compact. Now remember, when you expect the handle to contain
one and only one record, use the Bio.SeqI0.read() function:

from Bio import Entrez
from Bio import SeqIO

Entrez.email = "A.N.Other@example.com"
with Entrez.efetch(
db="nucleotide", rettype="fasta", retmode="text", id="6273291"
) as handle:
seq_record = SeqlIO.read(handle, "fasta")
print("7%s with i features" J (seq_record.id, len(seq_record.features)))

Expected output:
gi16273291|gb|AF191665.1|AF191665 with O features

The NCBI will also let you ask for the file in other formats, in particular as a GenBank file. Until Easter
2009, the Entrez EFetch API let you use “genbank” as the return type, however the NCBI now insist on
using the official return types of “gb” (or “gp” for proteins) as described on EFetch for Sequence and other
Molecular Biology Databases. As a result, in Biopython 1.50 onwards, we support “gh” as an alias for
“genbank” in Bio.SeqIO.

from Bio import Entrez
from Bio import SeqIO

Entrez.email = "A.N.Other@example.com"
with Entrez.efetch(
db="nucleotide", rettype="gb", retmode="text", i1d="6273291"
) as handle:
seq_record = Seql0.read(handle, "gb") # using "gb" as an alias for "genbank"
print("%s with %i features" 7 (seq_record.id, len(seq_record.features)))

The expected output of this example is:
AF191665.1 with 3 features

Notice this time we have three features.
Now let’s fetch several records. This time the handle contains multiple records, so we must use the
Bio.SeqI0.parse() function:
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from Bio import Entrez
from Bio import SeqIO

Entrez.email = "A.N.Other@example.com"
with Entrez.efetch(

db="nucleotide", rettype="gb", retmode="text", 1d="6273291,6273290,6273289"
) as handle:

for seq_record in SeqlO0.parse(handle, "gb"):

print("%s %s..." 7 (seq_record.id, seq_record.description[:50]))
print(

"Sequence length i, %i features, from: %s"

% (

len(seq_record),
len(seq_record.features),
seq_record.annotations["source"],

)
That should give the following output:

AF191665.1 Opuntia marenae rpll6 gene; chloroplast gene for c...
Sequence length 902, 3 features, from: chloroplast Opuntia marenae
AF191664.1 Opuntia clavata rpll6 gene; chloroplast gene for c...
Sequence length 899, 3 features, from: chloroplast Grusonia clavata
AF191663.1 Opuntia bradtiana rpll6 gene; chloroplast gene for...
Sequence length 899, 3 features, from: chloroplast Opuntia bradtianaa

See Chapter 9 for more about the Bio.Entrez module, and make sure to read about the NCBI guidelines
for using Entrez (Section 9.1).

5.3.2 Parsing SwissProt sequences from the net

Now let’s use a handle to download a SwissProt file from ExPASy, something covered in more depth in
Chapter 10. As mentioned above, when you expect the handle to contain one and only one record, use the
Bio.SeqI0.read() function:

from Bio import ExPASy
from Bio import SeqlO

with ExPASy.get_sprot_raw("023729") as handle:
seq_record = Seql0.read(handle, "swiss")

print(seq_record.id)

print (seq_record.name)

print (seq_record.description)

print (repr(seq_record.seq))

print ("Length %i" 7 len(seq_record))

print(seq_record.annotations["keywords"])

Assuming your network connection is OK, you should get back:

023729
CHS3_BROFI
RecName: Full=Chalcone synthase 3; EC=2.3.1.74; AltName: Full=Naringenin-chalcone synthase 3;
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Seq(’MAPAMEEIRQAQRAEGPAAVLAIGTSTPPNALYQADYPDYYFRITKSEHLTELK. . .GAE’, ProteinAlphabet())
Length 394
[’Acyltransferase’, ’Flavonoid biosynthesis’, ’Transferase’]

5.4 Sequence files as Dictionaries

We're now going to introduce three related functions in the Bio.SeqI0 module which allow dictionary like
random access to a multi-sequence file. There is a trade off here between flexibility and memory usage. In
summary:

e Bio.SeqI0.to_dict() is the most flexible but also the most memory demanding option (see Sec-
tion 5.4.1). This is basically a helper function to build a normal Python dictionary with each entry
held as a SeqRecord object in memory, allowing you to modify the records.

e Bio.SeqI0.index() is a useful middle ground, acting like a read only dictionary and parsing sequences
into SeqRecord objects on demand (see Section 5.4.2).

e Bio.SeqI0.index_db() also acts like a read only dictionary but stores the identifiers and file offsets in a
file on disk (as an SQLite3 database), meaning it has very low memory requirements (see Section 5.4.3),
but will be a little bit slower.

See the discussion for an broad overview (Section 5.4.5).

5.4.1 Sequence files as Dictionaries — In memory

The next thing that we’ll do with our ubiquitous orchid files is to show how to index them and access
them like a database using the Python dictionary data type (like a hash in Perl). This is very useful for
moderately large files where you only need to access certain elements of the file, and makes for a nice quick
'n dirty database. For dealing with larger files where memory becomes a problem, see Section 5.4.2 below.
You can use the function Bio.SeqI0.to_dict () to make a SeqRecord dictionary (in memory). By default
this will use each record’s identifier (i.e. the .id attribute) as the key. Let’s try this using our GenBank file:

>>> from Bio import SeqIO
>>> orchid_dict = SeqlI0.to_dict(SeqlIO.parse("ls_orchid.gbk", "genbank"))

There is just one required argument for Bio.SeqI0.to_dict(), a list or generator giving SeqRecord
objects. Here we have just used the output from the SeqI0.parse function. As the name suggests, this
returns a Python dictionary.

Since this variable orchid_dict is an ordinary Python dictionary, we can look at all of the keys we have
available:

>>> len(orchid_dict)
94

>>> list(orchid_dict.keys())
[°Z78484.1°, ’778464.1°, ’Z78455.1°, °Z78442.1°, *7Z78532.1°, ’Z78453.1°, ..., ’Z78471.1°]

You can leave out the “list(...)“ bit if you are still using Python 2. Under Python 3 the dictionary
methods like “.keys()“ and “.values()“ are iterators rather than lists.
If you really want to, you can even look at all the records at once:

>>> list(orchid_dict.values()) #lots of output!

We can access a single SeqRecord object via the keys and manipulate the object as normal:
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>>> seq_record = orchid_dict["Z78475.1"]

>>> print(seq_record.description)

P.supardii 5.8S rRNA gene and ITS1 and ITS2 DNA

>>> print(repr(seq_record.seq))
Seq(’CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT. . .GGT’>, IUPACAmbiguousDNA())

So, it is very easy to create an in memory “database” of our GenBank records. Next we’ll try this for
the FASTA file instead.

Note that those of you with prior Python experience should all be able to construct a dictionary like this
“by hand”. However, typical dictionary construction methods will not deal with the case of repeated keys
very nicely. Using the Bio.SeqI0.to_dict () will explicitly check for duplicate keys, and raise an exception
if any are found.

5.4.1.1 Specifying the dictionary keys
Using the same code as above, but for the FASTA file instead:

from Bio import SeqIO

orchid_dict = SeqI0.to_dict(SeqI0.parse("ls_orchid.fasta", "fasta"))
print (orchid_dict.keys())

This time the keys are:

[’gi|2765596 | emb|Z78471.1|PDZ78471°, ’gi|2765646|emb|Z78521.1|CCZ78521",
., ’gil2765613|emb|Z78488.1|PTZ78488°, ’gi|2765583|emb|Z78458.1|PHZ78458°]

You should recognise these strings from when we parsed the FASTA file earlier in Section 2.4.1. Suppose
you would rather have something else as the keys - like the accession numbers. This brings us nicely to
SeqI0.to_dict()’s optional argument key_function, which lets you define what to use as the dictionary
key for your records.

First you must write your own function to return the key you want (as a string) when given a SeqRecord
object. In general, the details of function will depend on the sort of input records you are dealing with. But
for our orchids, we can just split up the record’s identifier using the “pipe” character (the vertical line) and
return the fourth entry (field three):

def get_accession(record):
"mrrGiven a SeqRecord, return the accession number as a string.

e.g. "gi/2765613]emb|Z78488.1|PTZ78488" -> "Z78488.1"

nmnn

parts = record.id.split("|")
assert len(parts) == 5 and parts[0] == "gi" and parts[2] == "emb"
return parts/[3]

Then we can give this function to the SeqI0.to_dict() function to use in building the dictionary:

from Bio import SeqlO

orchid_dict = SeqI0.to_dict(

SeqI0.parse("ls_orchid.fasta", "fasta"), key_function=get_accession
)
print (orchid_dict.keys())
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Finally, as desired, the new dictionary keys:

>>> print(orchid_dict.keys())
[’Z78484.1°, °Z78464.1°, ’Z78455.1°, °Z78442.1°, °7Z78532.1°, ’Z78453.1°, ..., ’Z78471.1°]

Not too complicated, I hope!

5.4.1.2 Indexing a dictionary using the SEGUID checksum

To give another example of working with dictionaries of SeqRecord objects, we’ll use the SEGUID checksum
function. This is a relatively recent checksum, and collisions should be very rare (i.e. two different sequences
with the same checksum), an improvement on the CRC64 checksum.

Once again, working with the orchids GenBank file:

from Bio import SeqIO
from Bio.SeqUtils.CheckSum import seguid

for record in SeqIO.parse("ls_orchid.gbk", "genbank"):
print(record.id, seguid(record.seq))

This should give:

Z78533.1 JUEoWn6DPhgZ9nAyowsgtoD9TTo
Z78532.1 MN/s0q9zDoCVEEc+k/IFwCNF2pY

Z78439.1 H+JfaShya/4yyAj7IbMqgNkxdxQ

Now, recall the Bio.SeqI0.to_dict() function’s key_function argument expects a function which turns
a SeqRecord into a string. We can’t use the seguid() function directly because it expects to be given a Seq
object (or a string). However, we can use Python’s lambda feature to create a “one off” function to give to
Bio.SeqI0.to_dict() instead:

>>> from Bio import SeqIO

>>> from Bio.SeqUtils.CheckSum import seguid

>>> seguid_dict = SeqIO.to_dict(SeqI0.parse("ls_orchid.gbk", "genbank"),
o lambda rec : seguid(rec.seq))

>>> record = seguid_dict["MN/s0q9zDoCVEEc+k/IFwCNF2pY"]

>>> print(record.id)

278532.1

>>> print(record.description)

C.californicum 5.8S rRNA gene and ITS1 and ITS2 DNA

That should have retrieved the record Z78532. 1, the second entry in the file.

5.4.2 Sequence files as Dictionaries — Indexed files

As the previous couple of examples tried to illustrate, using Bio.SeqI0.to_dict () is very flexible. However,
because it holds everything in memory, the size of file you can work with is limited by your computer’s RAM.
In general, this will only work on small to medium files.

For larger files you should consider Bio.SeqI0.index (), which works a little differently. Although it
still returns a dictionary like object, this does not keep everything in memory. Instead, it just records where
each record is within the file — when you ask for a particular record, it then parses it on demand.

As an example, let’s use the same GenBank file as before:
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>>> from Bio import SeqlO

>>> orchid_dict = SeqIO.index("ls_orchid.gbk", "genbank")
>>> len(orchid_dict)

94

>>> orchid_dict.keys()
[>Z78484.1°, ’778464.1°, °Z78455.1°, °7Z78442.1°, *Z78532.1°, ’Z78453.1°, ..., ’Z78471.1°]

>>> seq_record = orchid_dict["Z78475.1"]

>>> print(seq_record.description)

P.supardii 5.8S rRNA gene and ITS1 and ITS2 DNA

>>> seq_record.seq

Seq(’CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGATCACAT. . .GGT’, IUPACAmbiguousDNA())
>>> orchid_dict.close()

Note that Bio.SeqI0.index() won’t take a handle, but only a filename. There are good reasons for this,
but it is a little technical. The second argument is the file format (a lower case string as used in the other
Bio.SeqlI0 functions). You can use many other simple file formats, including FASTA and FASTQ files (see
the example in Section 20.1.11). However, alignment formats like PHYLIP or Clustal are not supported.
Finally as an optional argument you can supply an alphabet, or a key function.

Here is the same example using the FASTA file - all we change is the filename and the format name:

>>> from Bio import SeqlO
>>> orchid_dict = SeqlIO0.index("ls_orchid.fasta", "fasta")
>>> len(orchid_dict)
94
>>> orchid_dict.keys()
[’gi|2765596|emb|Z78471.1|PDZ78471’, ’gi|2765646|emb|Z78521.1|CCZ78521",
., ’gil2765613|emb|Z78488.1|PTZ78488’, ’gi|2765583|emb|Z78458.1|PHZ78458"]

5.4.2.1 Specifying the dictionary keys

Suppose you want to use the same keys as before? Much like with the Bio.SeqI0.to_dict() example in
Section 5.4.1.1, you’ll need to write a tiny function to map from the FASTA identifier (as a string) to the
key you want:

def get_acc(identifier):
"rGiven a SeqRecord identifier string, return the accession number as a string.

e.g. "gi/2765613]emb|Z78488.1|PTZ78488" -> "Z78488.1"

nmnn

parts = identifier.split("|[")
assert len(parts) == 5 and parts[0] == "gi" and parts[2] == "emb"
return parts[3]

Then we can give this function to the Bio.SeqI0.index() function to use in building the dictionary:

>>> from Bio import SeqlO

>>> orchid_dict = SeqI0.index("ls_orchid.fasta", "fasta", key_function=get_acc)

>>> print(orchid_dict.keys())

[’Z78484.1°, ’Z78464.1°, *Z78455.1°, *Z78442.1°, °7Z78532.1’, ’Z78453.1°, ..., ’Z78471.1°]

Easy when you know how?
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5.4.2.2 Getting the raw data for a record

The dictionary-like object from Bio.SeqI0.index () gives you each entry as a SeqRecord object. However,
it is sometimes useful to be able to get the original raw data straight from the file. For this use the get_raw()
method which takes a single argument (the record identifier) and returns a bytes string (extracted from the
file without modification).

A motivating example is extracting a subset of a records from a large file where either Bio.SeqI0.write()
does not (yet) support the output file format (e.g. the plain text SwissProt file format) or where you need
to preserve the text exactly (e.g. GenBank or EMBL output from Biopython does not yet preserve every
last bit of annotation).

Let’s suppose you have download the whole of UniProt in the plain text SwissPort file format from their
FTP site (ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/
uniprot_sprot.dat.gz) and uncompressed it as the file uniprot_sprot.dat, and you want to extract just
a few records from it:

>>> from Bio import SeqlO
>>> uniprot = SeqI0.index("uniprot_sprot.dat", "swiss")
>>> with open("selected.dat", "wb") as out_handle:
for acc in ["P33487", "P19801", "P13689", "Q8JZQR5", "Q9TRC7"]:
out_handle.write(uniprot.get_raw(acc))

Note with Python 3 onwards, we have to open the file for writing in binary mode because the get_raw()
method returns bytes strings.

There is a longer example in Section 20.1.5 using the SeqI0.index() function to sort a large sequence
file (without loading everything into memory at once).

5.4.3 Sequence files as Dictionaries — Database indexed files

Biopython 1.57 introduced an alternative, Bio.SeqI0.index_db(), which can work on even extremely large
files since it stores the record information as a file on disk (using an SQLite3 database) rather than in
memory. Also, you can index multiple files together (providing all the record identifiers are unique).

The Bio.SeqI0.index() function takes three required arguments:

e Index filename, we suggest using something ending .idx. This index file is actually an SQLite3
database.

e List of sequence filenames to index (or a single filename)
e File format (lower case string as used in the rest of the SeqI0 module).

As an example, consider the GenBank flat file releases from the NCBI FTP site, ftp://ftp.ncbi.nih.
gov/genbank/, which are gzip compressed GenBank files.

As of GenBank release 210, there are 38 files making up the viral sequences, gbvrll.seq, ..., gbvrl38.seq,
taking about 8GB on disk once decompressed, and containing in total nearly two million records.

If you were interested in the viruses, you could download all the virus files from the command line very
easily with the rsync command, and then decompress them with gunzip:

# For illustration only, see reduced example below
$ rsync -avP "ftp.ncbi.nih.gov::genbank/gbvrl*.seq.gz"
$ gunzip gbvrl*.seq.gz

Unless you care about viruses, that’s a lot of data to download just for this example - so let’s download
just the first four chunks (about 25MB each compressed), and decompress them (taking in all about 1GB of
space):
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Reduced example, download only the first four chunks
curl -0 ftp://ftp.ncbi.nih.gov/genbank/gbvrll.seq.gz
curl -0 ftp://ftp.ncbi.nih.gov/genbank/gbvrl2.seq.gz
curl -0 ftp://ftp.ncbi.nih.gov/genbank/gbvrl3.seq.gz
curl -0 ftp://ftp.ncbi.nih.gov/genbank/gbvrld.seq.gz
gunzip gbvrl*.seq.gz

$H hH L P PHH

Now, in Python, index these GenBank files as follows:

>>> import glob

>>> from Bio import SeqlO

>>> files = glob.glob("gbvrl*.seq")

>>> print("i files to index" 7, len(files))

4

>>> gb_vrl = SeqlIO.index_db("gbvrl.idx", files, "genbank")
>>> print("’%i sequences indexed" 7, len(gb_vrl))

272960 sequences indexed

Indexing the full set of virus GenBank files took about ten minutes on my machine, just the first four
files took about a minute or so.

However, once done, repeating this will reload the index file gbvrl.idx in a fraction of a second.

You can use the index as a read only Python dictionary - without having to worry about which file the
sequence comes from, e.g.

>>> print(gb_vrl["AB811634.1"] .description)
Equine encephalosis virus NS3 gene, complete cds, isolate: Kimronl.

5.4.3.1 Getting the raw data for a record

Just as with the Bio.SeqI0.index () function discussed above in Section 5.4.2.2; the dictionary like object
also lets you get at the raw bytes of each record:

>>> print(gb_vrl.get_raw("AB811634.1"))

LOCUS AB811634 723 bp RNA linear VRL 17-JUN-2015
DEFINITION Equine encephalosis virus NS3 gene, complete cds, isolate: Kimronl.
ACCESSION  AB811634

//
5.4.4 Indexing compressed files

Very often when you are indexing a sequence file it can be quite large — so you may want to compress it
on disk. Unfortunately efficient random access is difficult with the more common file formats like gzip and
bzip2. In this setting, BGZF (Blocked GNU Zip Format) can be very helpful. This is a variant of gzip (and
can be decompressed using standard gzip tools) popularised by the BAM file format, samtools, and tabix.

To create a BGZF compressed file you can use the command line tool bgzip which comes with samtools.
In our examples we use a filename extension *.bgz, so they can be distinguished from normal gzipped files
(named *.gz). You can also use the Bio.bgzf module to read and write BGZF files from within Python.

The Bio.SeqIO0.index() and Bio.SeqIO.index_db() can both be used with BGZF compressed files.
For example, if you started with an uncompressed GenBank file:

>>> from Bio import SeqlO
>>> orchid_dict = SeqI0.index("ls_orchid.gbk", "genbank")
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>>> len(orchid_dict)
94
>>> orchid_dict.close()

You could compress this (while keeping the original file) at the command line using the following command
— but don’t worry, the compressed file is already included with the other example files:

$ bgzip -c 1ls_orchid.gbk > 1ls_orchid.gbk.bgz
You can use the compressed file in exactly the same way:

>>> from Bio import SeqlO

>>> orchid_dict = SeqI0.index("ls_orchid.gbk.bgz", "genbank")
>>> len(orchid_dict)

94

>>> orchid_dict.close()

or:

>>> from Bio import SeqlO

>>> orchid_dict = SeqI0.index_db("ls_orchid.gbk.bgz.idx", "ls_orchid.gbk.bgz", "genbank")
>>> len(orchid_dict)

94

>>> orchid_dict.close()

The SeqI0 indexing automatically detects the BGZF compression. Note that you can’t use the same
index file for the uncompressed and compressed files.

5.4.5 Discussion

So, which of these methods should you use and why? It depends on what you are trying to do (and how much
data you are dealing with). However, in general picking Bio.SeqI0.index() is a good starting point. If you
are dealing with millions of records, multiple files, or repeated analyses, then look at Bio.SeqIO.index_db().

Reasons to choose Bio.SeqIO0.to_dict() over either Bio.SeqIO.index() or Bio.SeqI0.index_db()
boil down to a need for flexibility despite its high memory needs. The advantage of storing the SeqRecord
objects in memory is they can be changed, added to, or removed at will. In addition to the downside of high
memory consumption, indexing can also take longer because all the records must be fully parsed.

Both Bio.SeqI0.index() and Bio.SeqI0.index_db() only parse records on demand. When indexing,
they scan the file once looking for the start of each record and do as little work as possible to extract the
identifier.

Reasons to choose Bio.SeqI0.index () over Bio.SeqIO0.index_db() include:

e Faster to build the index (more noticeable in simple file formats)

e Slightly faster access as SeqRecord objects (but the difference is only really noticeable for simple to
parse file formats).

e Can use any immutable Python object as the dictionary keys (e.g. a tuple of strings, or a frozen set)
not just strings.

e Don’t need to worry about the index database being out of date if the sequence file being indexed has
changed.

Reasons to choose Bio.SeqI0.index_db() over Bio.SeqIO0.index() include:

65



e Not memory limited — this is already important with files from second generation sequencing where
10s of millions of sequences are common, and using Bio.SeqI0.index() can require more than 4GB
of RAM and therefore a 64bit version of Python.

e Because the index is kept on disk, it can be reused. Although building the index database file takes
longer, if you have a script which will be rerun on the same datafiles in future, this could save time in
the long run.

e Indexing multiple files together

o The get_raw() method can be much faster, since for most file formats the length of each record is
stored as well as its offset.

5.5 Writing Sequence Files

We've talked about using Bio.SeqIO.parse() for sequence input (reading files), and now we’ll look at
Bio.SeqI0.write() which is for sequence output (writing files). This is a function taking three arguments:
some SeqRecord objects, a handle or filename to write to, and a sequence format.

Here is an example, where we start by creating a few SeqRecord objects the hard way (by hand, rather
than by loading them from a file):

from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
from Bio.Alphabet import generic_protein

recl = SeqRecord(

Seq(
"MMYQQGCFAGGTVLRLAKDLAENNRGARVLVVCSEITAVTFRGPSETHLDSMVGQALFGD"
"GAGAVIVGSDPDLSVERPLYELVWTGATLLPDSEGAIDGHLREVGLTFHLLKDVPGLISK"
"NIEKSLKEAFTPLGISDWNSTFWIAHPGGPAILDQVEAKLGLKEEKMRATREVLSEYGNM"
"SSAC",
generic_protein,

),

id="gi|14150838|gb|AAK54648.1|AF376133_1",

description="chalcone synthase [Cucumis sativus]",

rec2 = SeqRecord(

Seq(
"YPDYYFRITNREHKAELKEKFQRMCDKSMIKKRYMYLTEEILKENPSMCEYMAPSLDARQ"
"DMVVVEIPKLGKEAAVKAIKEWGQ",
generic_protein,

),

id="gi|13919613|gb|AAK33142.1|",

description="chalcone synthase [Fragaria vesca subsp. bracteatal",

rec3 = SeqRecord(

Seq(
"MVTVEEFRRAQCAEGPATVMAIGTATPSNCVDQSTYPDYYFRITNSEHKVELKEKFKRMC"
"EKSMIKKRYMHLTEEILKENPNICAYMAPSLDARQDIVVVEVPKLGKEAAQKAIKEWGQP"
"KSKITHLVFCTTSGVDMPGCDYQLTKLLGLRPSVKRFMMYQQGCFAGGTVLRMAKDLAEN"
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"NKGARVLVVCSEITAVTFRGPNDTHLDSLVGQALFGDGAAAVIIGSDPIPEVERPLFELV"
"SAAQTLLPDSEGAIDGHLREVGLTFHLLKDVPGLISKNIEKSLVEAFQPLGISDWNSLFW"
"IAHPGGPAILDQVELKLGLKQEKLKATRKVLSNYGNMSSACVLFILDEMRKASAKEGLGT"
"TGEGLEWGVLFGFGPGLTVETVVLHSVAT",
generic_protein,

),

id="gi[13925890|gb|AAK49457.1]",

description="chalcone synthase [Nicotiana tabacum]",

my_records = [recl, rec2, rec3]
Now we have a list of SeqRecord objects, we’ll write them to a FASTA format file:

from Bio import SeqIO

SeqI0.write(my_records, "my_example.faa", "fasta")
And if you open this file in your favourite text editor it should look like this:

>gi|14150838|gb|AAK54648.1|AF376133_1 chalcone synthase [Cucumis sativus]
MMYQQGCFAGGTVLRLAKDLAENNRGARVLVVCSEITAVTFRGPSETHLDSMVGQALFGD
GAGAVIVGSDPDLSVERPLYELVWTGATLLPDSEGAIDGHLREVGLTFHLLKDVPGLISK
NIEKSLKEAFTPLGISDWNSTFWIAHPGGPAILDQVEAKLGLKEEKMRATREVLSEYGNM

SSAC

>gi[13919613|gb|AAK33142.1| chalcone synthase [Fragaria vesca subsp. bracteatal
YPDYYFRITNREHKAELKEKFQRMCDKSMIKKRYMYLTEEILKENPSMCEYMAPSLDARQ
DMVVVEIPKLGKEAAVKAIKEWGQ

>gi|13925890|gb|AAK49457.1| chalcone synthase [Nicotiana tabacum]
MVTVEEFRRAQCAEGPATVMAIGTATPSNCVDQSTYPDYYFRITNSEHKVELKEKFKRMC
EKSMIKKRYMHLTEEILKENPNICAYMAPSLDARQDIVVVEVPKLGKEAAQKAIKEWGQP
KSKITHLVFCTTSGVDMPGCDYQLTKLLGLRPSVKRFMMYQQGCFAGGTVLRMAKDLAEN
NKGARVLVVCSEITAVTFRGPNDTHLDSLVGQALFGDGAAAVIIGSDPIPEVERPLFELV
SAAQTLLPDSEGAIDGHLREVGLTFHLLKDVPGLISKNIEKSLVEAFQPLGISDWNSLFW
TAHPGGPAILDQVELKLGLKQEKLKATRKVLSNYGNMSSACVLFILDEMRKASAKEGLGT
TGEGLEWGVLFGFGPGLTVETVVLHSVAT

Suppose you wanted to know how many records the Bio.SeqIO.write() function wrote to the handle?
If your records were in a list you could just use len(my_records), however you can’t do that when your
records come from a generator/iterator. The Bio.SeqI0.write() function returns the number of SeqRecord
objects written to the file.

Note - If you tell the Bio.SeqI0.write() function to write to a file that already exists, the old file will
be overwritten without any warning.

5.5.1 Round trips

Some people like their parsers to be “round-tripable”, meaning if you read in a file and write it back out again
it is unchanged. This requires that the parser must extract enough information to reproduce the original file
ezactly. Bio.SeqI0 does not aim to do this.

As a trivial example, any line wrapping of the sequence data in FASTA files is allowed. An identical
SeqRecord would be given from parsing the following two examples which differ only in their line breaks:
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>YALO68C-7235.2170 Putative promoter sequence
TACGAGAATAATTTCTCATCATCCAGCTTTAACACAAAATTCGCACAGTTTTCGTTAAGA
GAACTTAACATTTTCTTATGACGTAAATGAAGTTTATATATAAATTTCCTTTTTATTGGA

>YALO68C-7235.2170 Putative promoter sequence
TACGAGAATAATTTCTCATCATCCAGCTTTAACACAAAATTCGCA
CAGTTTTCGTTAAGAGAACTTAACATTTTCTTATGACGTAAATGA
AGTTTATATATAAATTTCCTTTTTATTGGA

To make a round-tripable FASTA parser you would need to keep track of where the sequence line breaks
occurred, and this extra information is usually pointless. Instead Biopython uses a default line wrapping of
60 characters on output. The same problem with white space applies in many other file formats too. Another
issue in some cases is that Biopython does not (yet) preserve every last bit of annotation (e.g. GenBank and
EMBL).

Occasionally preserving the original layout (with any quirks it may have) is important. See Section 5.4.2.2
about the get_raw() method of the Bio.SeqI0.index() dictionary-like object for one potential solution.

5.5.2 Converting between sequence file formats

In previous example we used a list of SeqRecord objects as input to the Bio.SeqI0.write() function, but
it will also accept a SeqRecord iterator like we get from Bio.SeqI0.parse() — this lets us do file conversion
by combining these two functions.

For this example we’ll read in the GenBank format file ls_orchid.gbk and write it out in FASTA format:

from Bio import SeqIO

records = SeqI0.parse("ls_orchid.gbk", "genbank")
count = SeqI0.write(records, "my_example.fasta", "fasta'")
print("Converted i records" % count)

Still, that is a little bit complicated. So, because file conversion is such a common task, there is a helper
function letting you replace that with just:

from Bio import SeqlO

count = SeqlIO.convert("ls_orchid.gbk", "genbank", "my_example.fasta", "fasta")
print ("Converted i records" 7 count)

The Bio.SeqI0.convert() function will take handles or filenames. Watch out though — if the output
file already exists, it will overwrite it! To find out more, see the built in help:

>>> from Bio import SeqIO
>>> help(SeqlI0.convert)

In principle, just by changing the filenames and the format names, this code could be used to convert
between any file formats available in Biopython. However, writing some formats requires information (e.g.
quality scores) which other files formats don’t contain. For example, while you can turn a FASTQ file into
a FASTA file, you can’t do the reverse. See also Sections 20.1.9 and 20.1.10 in the cookbook chapter which
looks at inter-converting between different FAST(Q formats.

Finally, as an added incentive for using the Bio.SeqI0.convert () function (on top of the fact your code
will be shorter), doing it this way may also be faster! The reason for this is the convert function can take
advantage of several file format specific optimisations and tricks.
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5.5.3 Converting a file of sequences to their reverse complements

Suppose you had a file of nucleotide sequences, and you wanted to turn it into a file containing their reverse
complement sequences. This time a little bit of work is required to transform the SeqRecord objects we get
from our input file into something suitable for saving to our output file.

To start with, we’ll use Bio.SeqI0.parse() to load some nucleotide sequences from a file, then print out
their reverse complements using the Seq object’s built in .reverse_complement () method (see Section 3.7):

>>> from Bio import SeqIO

>>> for record in SeqlO0.parse("ls_orchid.gbk", "genbank"):
print(record.id)
print(record.seq.reverse_complement ())

Now, if we want to save these reverse complements to a file, we’ll need to make SeqRecord objects. We
can use the SeqRecord object’s built in .reverse_complement () method (see Section 4.9) but we must
decide how to name our new records.

This is an excellent place to demonstrate the power of list comprehensions which make a list in memory:

>>> from Bio import SeqIO

>>> records = [rec.reverse_complement(id="rc_"+rec.id, description = "reverse complement") \
R for rec in SeqIO.parse("ls_orchid.fasta", "fasta")]

>>> len(records)
94

Now list comprehensions have a nice trick up their sleeves, you can add a conditional statement:

>>> records = [rec.reverse_complement(id="rc_"+rec.id, description = "reverse complement") \
for rec in SeqlI0.parse("ls_orchid.fasta", "fasta") if len(rec)<700]

>>> len(records)
18

That would create an in memory list of reverse complement records where the sequence length was under
700 base pairs. However, we can do exactly the same with a generator expression - but with the advantage
that this does not create a list of all the records in memory at once:

>>> records = (rec.reverse_complement(id="rc_"+rec.id, description = "reverse complement") \
for rec in SeqIO.parse("ls_orchid.fasta", "fasta") if len(rec)<700)

As a complete example:

>>> from Bio import SeqIO

>>> records = (rec.reverse_complement(id="rc_"+rec.id, description = "reverse complement") \
. for rec in SeqlIO.parse("ls_orchid.fasta", "fasta") if len(rec)<700)

>>> Seql0.write(records, "rev_comp.fasta", "fasta")

18

There is a related example in Section 20.1.3, translating each record in a FASTA file from nucleotides to
amino acids.

5.5.4 Getting your SeqRecord objects as formatted strings

Suppose that you don’t really want to write your records to a file or handle — instead you want a string
containing the records in a particular file format. The Bio.SeqIO interface is based on handles, but Python
has a useful built in module which provides a string based handle.

For an example of how you might use this, let’s load in a bunch of SeqRecord objects from our orchids
GenBank file, and create a string containing the records in FASTA format:
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from Bio import SeqlO
from StringI0 import StringIO

records = SeqI0.parse("ls_orchid.gbk", "genbank")
out_handle = StringI0Q)

SeqI0.write(records, out_handle, "fasta")
fasta_data = out_handle.getvalue()
print(fasta_data)

This isn’t entirely straightforward the first time you see it! On the bright side, for the special case where
you would like a string containing a single record in a particular file format, use the the SeqRecord class’
format () method (see Section 4.6).

Note that although we don’t encourage it, you can use the format () method to write to a file, for example
something like this:

from Bio import SeqIO

with open("ls_orchid_long.tab", "w") as out_handle:
for record in SeqlIO.parse("ls_orchid.gbk", "genbank"):
if len(record) > 100:
out_handle.write(record.format("tab"))

While this style of code will work for a simple sequential file format like FASTA or the simple tab separated
format used here, it will not work for more complex or interlaced file formats. This is why we still recommend
using Bio.SeqI0.write(), as in the following example:

from Bio import SeqlO

records = (rec for rec in SeqlIO.parse("ls_orchid.gbk", "genbank") if len(rec) > 100)
SeqI0.write(records, "ls_orchid.tab", "tab")

Making a single call to SeqI0.write(. . .) is also much quicker than multiple calls to the SeqRecord.format (. . .

method.

5.6 Low level FASTA and FASTQ parsers

Working with the low-level SimpleFastaParser or FastqGenerallterator is often more practical than
Bio.SeqI0.parse when dealing with large high-throughput FASTA or FASTQ sequencing files where speed
matters. As noted in the introduction to this chapter, the file-format neutral Bio.SeqI0 interface has the
overhead of creating many objects even for simple formats like FASTA.

When parsing FASTA files, internally Bio.SeqI0.parse() calls the low-level SimpleFastaParser with
the file handle. You can use this directly - it iterates over the file handle returning each record as a tuple of
two strings, the title line (everything after the > character) and the sequence (as a plain string):

>>> from Bio.SeqIO.FastaIO import SimpleFastaParser
>>> count = 0
>>> total_len = 0O
>>> with open("ls_orchid.fasta") as in_handle:
for title, seq in SimpleFastaParser(in_handle):
count += 1
total_len += len(seq)

>>> print("Yi records with total sequence length i" % (count, total_len))
94 records with total sequence length 67518
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As long as you don’t care about line wrapping (and you probably don’t for short read high-througput
data), then outputing FASTA format from these strings is also very fast:

out_handle.write(">’s\n%s\n" 7 (title, seq))

Likewise, when parsing FASTQ files, internally Bio.SeqI0.parse() calls the low-level FastqGeneralIterator
with the file handle. If you don’t need the quality scores turned into integers, or can work with them as
ASCII strings this is ideal:

>>> from Bio.SeqI0.QualityIO0 import FastqGenerallterator
>>> count = 0
>>> total_len = O
>>> with open("example.fastq") as in_handle:
for title, seq, qual in FastqGenerallterator(in_handle):
count += 1
total_len += len(seq)

>>> print("i records with total sequence length %i" % (count, total_len))
3 records with total sequence length 75

There are more examples of this in the Cookbook (Chapter 20), including how to output FASTQ efficiently

from strings using this code snippet:

out_handle.write("@/s\n’s\n+\n%s\n" J (title, seq, qual))
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