
Modeling Communication Network Requirements

for an Integrated Clinical Environment in the

Prototype Verification System

Cinzia Bernardeschi

Department of Information Engineering

University of Pisa, Italy

cinzia.bernardeschi@iet.unipi.it

Andrea Domenici

Department of Information Engineering

University of Pisa, Italy

andrea.domenici@iet.unipi.it

Paolo Masci

HASLab, INESC TEC

& Universidade do Minho

Campus de Gualtar, Portugal

paolo.masci@inesctec.pt

Abstract—Health care practices increasingly rely on complex
technological infrastructure, and new approaches to the inte-
gration of information and communication technology in those
practices lead to the development of such concepts as integrated
clinical environments and smart intensive care units. These con-
cepts refer to hospital settings where therapy relies heavily on
inter-operating medical devices, supervised by clinicians assisted
by advanced monitoring and co-ordinating software. In order to
ensure safety and effectiveness of patient care, it is necessary to
specify the requirements of such socio-technical systems in the
most rigorous and precise way. This paper presents an approach
to the formalization of system requirements for communication
networks deployed in integrated clinical environment, based on
the higher-order logic language of a theorem-proving environ-
ment, the Prototype Verification System.

I. INTRODUCTION

Modern clinical practices involve a large number of medical

devices for disparate functions, such as ventilators, infusion

pumps, laser scalpels, or surgical robots, and a vast array

of monitoring and diagnosis devices, from pulse oxymeters

to imaging equipment. Until now, each device usually op-

erates independently of other devices and is supervised by

clinicians, but technological innovations foster new ways of

using medical equipment, which rely on the interconnection of

different devices under computer-assisted human supervision.

Computer-assisted supervision affords many benefits, includ-

ing the automatization of routine procedures and, above all, the

implementation of safety mechanisms. Further, computerized

management of inter-operating devices can be integrated with

information systems, both local and wide-area, to access

and maintain information on patients and therapies, both at

individual and statistical level.

This trend in clinical practices has led clinicians and medical

equipment producers to formulate such concepts as Integrated

Clinical Environment (ICE) [1] and smart ICU (Intensive

Care Unit) [2]. These clinical settings are safety-critical socio-

technical systems whose behavior is determined by complex

interactions between people and machines, needing precise and

rigorous requirements.

In these types of environments, interoperability [3] is a

crucial concern. Interoperability allows a seamless flow of

information between many disparate devices, so that dif-

ferent equipment from different vendors can communicate

over different networks. Existing interoperability standards

written for generic applications must be constrained by im-

posing the additional requirements of clinical applications.

Such clinical-oriented standards will make it easier to connect

future biomedical devices and clinical information system by

formulating a set of interoperability requirements [4], [5].

A central component of an ICE (Fig. 1) is the commu-

nication network. In a typical setting, the network enables

communication between many different devices in the hospital

area and the ICE supervisor, and possibly among devices.

Sensors for physiological parameters and therapy-delivering

devices may be carried on a patient’s body, and signals to and

from such equipment are exchanged with the supervisor and

maybe displayed on smartphones. Other equipment may be

operated by clinicians, such as ultrasound scanners, or bar-

code readers used to identify patients and drugs. Further, the

local network is connected to a wider-area network in order to

access various information systems, such as patient databases.

The main contribution of this paper is a theory in a

higher-order logic language defining requirements for the

communication network of an ICE. This logic specification

is a formal reference model for the ICE realization, and

for verification of its properties, in particular of its safety

requirements.

An extensive requirements specification for an ICE commu-

nication network is out of the scope of this paper, and only

the basic ideas illustrated by short excerpts are introduced.

The specification refers to a network whose nodes are medical

devices and computers, all equipped with wireless network

interfaces. In general, all nodes are mobile and subject to

the well known issues of wireless networks, such as sporadic

loss of connectivity. We may observe that wired devices, if

they can be unplugged and moved, are logically equivalent to

wireless ones, otherwise they can be seen as a degenerate case

of wireless nodes.

To the authors’ knowledge, no other work on the appli-

cation of formal logic to medical systems has appeared in

the literature so far. Among works related to the present



paper, the use of the Prolog language to formalize a portion

of the U.S. Health Insurance Portability and Accountability

Act (HIPAA) [6] can be cited. Medical processes have been

modeled with Guarded High-level Message Sequence Charts

(g-HMCS) [7], and a knowledge-based distributed system,

K4CARE, is used to support the needs of senior individuals

requiring a personalized home care assistance [8].

The paper is structured as follows: Section II introduces

the specification language of PVS, Section III describes

the general methodology to formalize the ICE requirements,

Section IV briefly discusses the high-level communication

requirements for an ICE, Section V presents the PVS theories

for the ICE communication network, in Section VI the use of

these theories for implementation and verification purposes is

discussed, and Section VII concludes the paper.

II. THE PVS SPECIFICATION LANGUAGE

The typed higher-order logic of the Prototype Verification

System (PVS) has been used for the formal specification of

medical devices [9], [10], [11], among several other kinds

of systems. In the PVS, a system is modeled by a theory,

i.e., a set of statements describing the system by means of

variable, constant, and function definitions, and of axioms

and theorems about them. In particular, the language makes it

possible for functions to return functions and pass functions

as function arguments. Properties of the system, expressed as

theorems, can then be proved with respect to the theory, using

the interactive PVS theorem prover.

A PVS theory can refer to other theories, thus enabling a

modular, hierarchical composition of complex systems from

subsystems. With the PVS type system it is possible to use all

the datatypes available to programming languages, but also to

define types that abstract from any unnecessary details: It is

then possible to state that the members of a given type satisfy

some properties, without any reference to the implementation

of the members. Further, subtypes can be specified by stating

the properties which characterize the subtype members.

A PVS extension, the PVSio package [12], adds a proto-

typing capability to the PVS environment. This is possible be-

cause PVS functions are total and can be effectively computed

when applied to ground, i.e., fully instantiated, arguments. The

PVSio package provides a ground evaluator and a library of

functions with side effects, e.g., reading inputs and producing

outputs, thus allowing a PVS theory to be interpreted and

executed, much in the style of logic programming languages.

The PVS syntax is rather complex, and some details will

be given in the text. Only few rules need to be given in

advance: (i) Function types are defined by signatures, i.e.,

“[domain → range]”, where the range may be another function

type; (ii) function definitions and applications may be written

in Curried form, i.e., f(x)(y) is syntactically equivalent to

f(x, y); (iii) subtypes can be defined by a clause of the form

subtype: TYPE FROM type, or by set comprehension, e.g.,

{n : nat | odd(n)}; (iv) formulas labeled as AXIOM are taken

by the prover as proved, while formulas labeled as THEOREM

or LEMMA must be proved.

Network
Supervisor

External networkexternal

interface

medical

device

medical

device

medical

device

Clinician

ICE

. . .

Patient

Fig. 1. An Integrated Clinical Environment (adapted from [1]).

III. FORMALIZING ICE REQUIREMENTS

The requirements for an ICE span a wide range of is-

sues, from administrative procedures to device operations.

For example, procedures to manage patient identity data may

reduce the risk of delivering a treatment to the wrong patient,

while compliance with safety standards may prevent device

failures. The requirements must take into account such issues

as clinician authorizations and authentication, alarms and

warnings, interconnection between ICE and devices, human-

machine interaction, and more. Expressing the requirements in

a formal language results in a large and complex conceptual

model that can be checked for consistency.

The specification process can be structured in two activ-

ities, domain identification and requirements formalization,

discussed in the rest of this section.

A. Domain identification

Domain identification means recognizing and representing

the fundamental concepts in the application domain. The appli-

cation domain of an ICE is composed of several (sub)domains,

each structured in levels of abstraction.

Using a higher-order logic as a specification language, a

domain is modeled by a theory defining types representing do-

main concepts, and functions and axioms representing relation-

ships among concepts. For example, a theory on patient iden-

tification may define the types patient and patient identifier;

the fact that a patient has an identifier may be expressed by a

function id returning the identifier of a patient, or possibly a

set of identifiers, if allowed.

In an earlier work [13], examples of formal requirements

were given for the ICE subdomains of patient identification,

physical parameters (such as temperature or pressure), and

devices.

For example, consider the devices subdomain. Its theory

depends on the physical parameters theory, since the state

of a device is defined by a set of controlled or observed

parameters. A device has a display, which is also represented

as a set of displayed parameters. The front panel, i.e., its

external interface, is represented abstractly by its display and

the set of commands it accepts. The generic theory for the

domain of medical devices includes the definitions for the

above concepts, and functions to access the parts or parameters

of a device:

devices_th: THEORY BEGIN



IMPORTING parameters_th

device: TYPE+

state: TYPE = setof[parameter]

command: TYPE+

display: TYPE = setof[parameter]

commands: TYPE = setof[command]

panel: TYPE = [# displ: display,

cmds: commands #]

st(d: device): state

pnl(d: device): panel

...

END devices_th

Note that the TYPE+ keyword asserts that type device is

nonempty.

At a lower abstraction level, different types of devices,

such as infusion pumps, are modeled as subtypes of device in

the respective theories, which introduce device-specific com-

mands, parameter, and functions describing state transitions.

The following infusion pumps theory is an example of a

device-specific theory.

infusion_pumps_th: THEORY BEGIN

IMPORTING devices_th

infusion_pump: TYPE+ FROM device

pause_cmd: command

% increment currently edited parm

incr: command

% decrement currently edited parm

decr: command

bolus: command % deliver a bolus

pwr: command % power on/off

...

END infusion_pumps_th

B. Requirements formalization

After domain identification, the requirements are specified

as a set of axioms, grouped in theories according to their main

subject. It should be noted that a requirement may involve

concepts from different domains.

For example, consider an infusion pump that may be

operated remotely (through the ICE supervisor) or locally

(manually). One of its safety requirement forbids all local

actions while the pump is under remote control, except for

the pause action, so that a clinician may stop drug delivery to

stall a perceived overdose situation. In order to express this

requirement, some concepts from the interaction theory are

needed, such as locally or remotely controlled devices, locally

or remotely issued commands, command instance, and so on:

interactions_th: THEORY BEGIN

IMPORTING devices_th

control: TYPE = {remote, local}
cmd_id: TYPE = posnat

cmd_instance: TYPE =

[# cmd: command, inst: cmd_instance #]

controlled_under(d: device): control

% has cmd_instance i been issued?

issued(i: cmd_instance): bool

% issued locally or remotely?

issued_under(i: cmd_instance): control

enabled(c: command): bool

% does c change a parameter or mode?

changer(c: command): bool

...

END interactions_th

The requirement can then be expressed as Axiom re-

mote disables local:

infusion_pump_reqmts_th: THEORY BEGIN

IMPORTING interactions_th,

infusion_pumps_th

remote_disables_local: AXIOM

forall (p: infusion_pump):

(controlled_under(p) = remote

=> forall (c: command):

(cmds(pnl(p))(c) and changer(c)

and c /= pause_cmd

=> not enabled(c)

and enabled(pause_cmd)))

...

END infusion_pump_reqmts_th

In the above fragment, pnl(p) is the panel of device p,

and cmds(pnl(p)) is the set of commands accepted by p.

In PVS, a set is interpreted as a predicate that is true only

for each set member, so the expression cmds(pnl(p))(c)

means that c belongs to the set of commands (cmds(...))

accepted by p. The axiom then means “for all pumps p, if p

is remotely controlled, then all its commands which change

parameter values or operation mode are disabled, except for

the pause command”.

IV. COMMUNICATION-RELATED ICE REQUIREMENTS

Several system-level ICE requirements induce other require-

ments on the underlying network. Such requirements concern

information integrity and availability, and system resilience

against malfunctions or improper operation. The basic fact

that an ICE is a set of interconnected devices implies that the

network must be dependable. Also specific ICE requirements

depend on the availability and correctness of the network. For

example, data on patient conditions must be available also

when the patient is moved to another room. Another important

ICE requirement is that the supervisor must be notified of

device disconnections.

A communication theory defines the high-level concepts

of communications between devices and supervisor, such

as destination device of a command instance, or issue and

reception time of a command instance.

communication_th: THEORY BEGIN

IMPORTING ...

connected(d: device): bool

sent_to(i: cmd_instance,

d: device, t: time): bool

received_by(i: cmd_instance,

d: device, t: time): bool

...

END communication_th

System-level requirements on communication can then be

expressed in the following theory:

communication_reqmts_th: THEORY BEGIN

IMPORTING communication_th

...



cmd_delivery: AXIOM

forall (i: cmd_instance,

d: device, t: time):

connected(d)

and sent_to(i, d, t)

=> exists (tr: time):

received_by(i, d, tr)

and t < tr

once: AXIOM

forall (i: cmd_instance,

d: device, t, t1: time):

received_by(i, d, t)

and received_by(i, d, t1)

=> t1 = t

disconnect_notification: AXIOM

forall (d: device):

not connected(d)

=> disconnect_alarm(d)

END communication_reqmts_th

The first two axioms above concern guarantee of delivery

and integrity of communication: cmd delivery states that every

command instance i sent to a connected device d at time t will

be received by d at a later time t1, while once states that any

command instance i received by a device d is received only

once. Suppose, for example, that the ICE supervisor resets

a life-supporting device so that it can be reprogrammed and

then restarted. If the data packet carrying the reset command is

duplicated and resent by a node, the spurious copy could reach

the device after restart and reset it, blocking its life-supporting

operation. The once axiom forbids this kind of hazard.

The third axiom requires that a disconnection notification

related to device d be produced when d is disconnected.

V. THE ICE COMMUNICATION NETWORK

The communication network must be highly reliable and

available, but it must also be flexible and easy to use. In par-

ticular, it must enable device mobility, which allows moving

patients and equipment.

The rest of this section sketches a network specification

that is general enough to allow for many different choices of

hardware and communication protocols.

Nodes are the communication interfaces of the medical

devices and of the supervisor, or routing elements. Each device

is mapped to one node.

nodes_th: THEORY BEGIN

IMPORTING devices_th

network_size: posnat

node_id: TYPE = below(network_size)

router_id: TYPE = finite_set[node_ids]

device_id: TYPE = finite_set[node_ids]

supervisor: node_id

dev2node_f: TYPE = [device -> node_id]

...

END nodes_th

The network structure is represented as a directed graph,

using the digraphs theory provided by the NASA PVS li-

braries [14], which is parametric with respect to the type of

graph nodes. In the network graph theory below, topology is

the type of functions from node identifiers to finite sets of node

identifiers, meant to represent physically connected nodes or

the set of immediate neighbors of each node.

Type network graph is the set of directed graphs represent-

ing the network connectivity. The graph has no self-edge.

network_graph_th: THEORY BEGIN

IMPORTING nodes_th, digraphs[node_ids]

topology: TYPE =

[node_ids -> finite_set[node_ids]]

network_graph: TYPE =

{g: digraph[node_ids] |

(FORALL (n: node_ids):

vert(g)(n))

and (forall (n, m: node_ids):

edges(g)((n, m)) => (n /= m))}
...

END network_graph_th

The packet theory defines packets as records with fields for

timestamp, originating (source) node, sender and destination

node, and payload:

packet_th: THEORY BEGIN

IMPORTING nodes_th, time_th

packet: TYPE = [#

timestamp: time,

source_addr: node_id,

sender_addr: node_id,

destination_addr: finite_set[node_id],

payload: finite_sequence[int] #]

END packet_th

The network theory defines the network state as a record

with fields for a global clock, functions mapping each node

to its receive buffer and to its physical location, and a log

recording the sequence of packets processed by each node.

Communication primitives, such as forward, handle packets

and update the network state accordingly.

network_th: THEORY BEGIN

IMPORTING time_th, receive_buffer_th,

location_th

network_state: TYPE = [#

global_clock: time,

net_rcv_buf: [node_id -> rcv_buf],

net_location: [node_id -> location] #]

log: [node_id ->

finite_sequence[packet]] #]

forward(p: packet)

(forwarder: node_id)

(net: network_state, g: network_graph):

network_state = ...

...

END network_th

A network protocol is an algorithm executed by each node

to propagate application-specific information. The algorithm

updates the network state and depends on the network struc-

ture, as shown in the following theory:

protocol_th: THEORY BEGIN

IMPORTING network_graph_th, network_th

protocol: TYPE =

[network_graph, node_id ->

[network_state -> network_state]]

END network_th



A. Requirements

The requirements of the communication network derive

from the higher-level ICE requirements, i.e., they express the

properties that any network implementation must exhibit in

order to be used in an ICE. Consider, for example, the once

axiom in Theory communication reqmts (Sec. IV). In terms of

network-specific concepts, the absence of packet duplication

can be expressed as “in any network state, for all packets p

and node n, the set of packets equal to p transmitted by n is

either empty or a singleton”:

comm_netwk_reqmts_th: THEORY BEGIN

IMPORTING ...

no_duplication: AXIOM

FORALL (net: network_state, p: packet):

FORALL (n: node_id):

empty?(transmitted(p, log(net), n) OR

singleton?(transmitted(p, log(net), n)

...

END comm_netwk_reqmts_th

Other types of requirements concern the interaction between

devices and supervisor at a higher abstraction level. For ex-

ample, in order to express the disconnect notification system

requirement (Sec. IV) as a network requirement, the following

declarations are included in the network theory:

alarm_cause: TYPE = {disconnection, ...}
severity_t: TYPE = {low, medium, high}
disconnected(d: device): bool

alarm(d: device,

c: alarm_cause, s:severity): bool

severity(d: device, c: alarm_cause):

severity_t

The alarm function is true if device d is in the condition

described by c, with severity level s. The latter is obtained by

function severity, whose value depends both on the affected

device and on the cause of the alarm.

The following function, from the network theory, checks if

node n is disconnected, by analyzing the network graph in

the current state. The actual definition of the function will be

specified by axioms.

node_disconn(s: network_state,

g: network_graph, n: node_ids):

bool

The following axioms from the comm netwk reqmts theory

specify the above stated disconnect notification requirement:

dev_disconn: AXIOM

FORALL (d: device):

FORALL (s: network_state):

FORALL (g: network_graph):

node_disconn(s, g, dev2node(d))

=> disconnected(d)

disconn_alarm: AXIOM

FORALL (d: device):

disconnected(d) =>

alarm(d, disconnection,

severity(d, disconnection))

The above discussion shows that PVS language is well

suited to specifying such a complex system as an ICE. The

modular composability of PVS theories and the flexibility

of the type system make it possible to structure the overall

specification in a set of interrelated theories, each devoted

to a specific (sub)domain or level of abstraction. Such a

specification would be easily maintainable, in case of changes

of regulations or introduction of new equipment or therapies.

VI. VERIFICATION

An advantage of the approach used in this work is its

ability to describe a system at different levels of abstraction. A

number of different versions of the theories can be developed

for each component, each one at a different level of detail. The

most abstract theories provide the declarations of the basic set

of interface functions (i.e., functions meant to be used in other

theories) and types. More detailed theories can be derived

from the abstract definitions by specifying the definition of

the functions and by extending types. If different versions of

a theory provide the same declarations for interface functions

and types, they are interchangeable, hence, when building the

model, the minimal set of details needed for analysis can be

used, by importing the appropriate version of the theory.

For example, consider the high-level definition of the pro-

tocol type in Section V-A above. An instance of that type is

a function defining the sequence of actions performed by a

generic node. Actions may depend on the content of received

packets (e.g., the sender address of a received packet) and on

the state of the node (e.g., the value of data gathered from the

sensing equipment).

As an example of a concrete protocol specification, let us

consider the reverse path forwarding protocol [15], a one-to-

many algorithm designed to deliver packets to all nodes in

the network. A simple version of this algorithm behaves as

follows: A node n accepts a packet received from node p

only if n believes that p is the best next hop on the path to

the base station, as specified in the routing table. This protocol

could be used by the supervisor to query all devices in order

to check if they are all connected.

The following rpf theory contains the definition of the

reverse path forwarding protocol.

rpf_th: THEORY BEGIN

IMPORTING ...

...

rpf(g:network_graph, n: node_id)

(net: network_state): network_state =

IF empty?(net_rcv_buf(net)(n))

THEN idle(n)(net, g, rt)

ELSE

LET rcvd_p =

getpacket(net_rcv_buf(net)(n)),

source_addr = source_addr(rcvd_p),

sender_addr = sender_addr(rcvd_p),

next_hop = next_hop(n, bstn)(g, rt)

IN IF sender_addr = next_hop

THEN forward(rcvd_p)(n)(net,g,rt)

ELSE drop(rcvd_p)(n)(net, g, rt)

ENDIF

ENDIF

END rpf_th



Functions idle, forward, and drop are low level single-hop

communication primitives modeling the “no action” behavior,

packet forwarding, and packet dropping, respectively, from

the network theory. Function next hop is declared in a rout-

ing table theory (not shown).

Verification is accomplished by producing a formal model

of the implementation to be verified. Then a verification theory

can be built, where the axioms from the requirements theories

are expressed as theorems on the implementation model, as

shown in the following schema, where the no duplication

requirement is taken as an example:

implementation_th: THEORY BEGIN

IMPORTING protocol_th, rpf_th ...

init_state: network_state

= (# ... #)

transmitted(p: packet,

l: [node_id -> finite_sequence[packet]],

n: node_id): bool =

% a predicate depending on

% the rpf protocol

END implementation_th

verification_th: THEORY BEGIN

IMPORTING implementation_th ...

no_duplication_thm: THEOREM

FORALL (net: network_state, p: packet):

FORALL (n: node_id):

empty?((transmitted(p, log(net)), n) OR

singleton?((transmitted(p, log(net)), n)

END verification_th

The implementation theory contains assumptions on the

implemented network, including structural and behavioral

properties, the definition of, or assumption on, the initial state,

and how a packet is transmitted through the rpf protocol. In

the verification theory, it is then possible to prove that the

chosen protocol satisfies the above requirement.

VII. CONCLUSIONS

The development of ICEs poses many challenges, as they

must face the complexity of socio-technical systems and

satisfy strict safety requirements. In particular, rigorous re-

quirements specification is an essential basis for development.

In this paper, an approach to the formalization of system re-

quirements for a core subsystem of integrated clinical environ-

ments, the communication network, is proposed, elaborating

on the guidelines presented in previous work. The fundamental

feature of this approach is the use of a higher-order logic

language, provided by the PVS theorem-proving environment.

The approach has been illustrated by providing and dis-

cussing short excerpts of logical theories describing concepts

of, and requirements on, different aspects of communication

networks for clinical environments, at different abstraction

levels. The examples are meant to support the thesis that logic-

based formal specification is a useful tool in the development

of complex, safety-critical systems, including integrated clini-

cal environments, as it enables developers to produce modular,

detailed, and flexible specifications, which can then be used

for formal verification.

ACKNOWLEDGMENTS

This work was partially supported by Project “Analisi

di dati sensoriali: dai sensori tradizionali ai sensori sociali

(2015–16)” funded by the University of Pisa. Paolo Masci

is financed by the North Portugal Regional Operational Pro-

gramme (NORTE 2020), under the PORTUGAL 2020 Partner-

ship Agreement, and through the European Regional Develop-

ment Fund (ERDF) within Project “NORTE-01-0145-FEDER-

000016”.

REFERENCES

[1] F2761-2009, Medical Devices and Medical Systems — Essential safety

requirements for equipment comprising the patient-centric integrated

clinical environment (ICE) — Part 1: General requirements and

conceptual model, IEC, International Electrotechnical Commission,
2008.

[2] N. A. Halpern, “Advanced informatics in the intensive care unit:
Possibilities and challenges. ,” February 2014. [Online]. Available:
http://healthcare.nist.gov/medicaldevices/publications.html

[3] B. Moorman, “Medical Device Interoperability: Standards Overview,”
April 2010. [Online]. Available: http://www.continuaalliance.org/sites/
default/files/132-138\ IT\ WorldMA2010.pdf

[4] J. Kabachinski, “What is health level 7?” Biomedical Instrumentation

& Technology, vol. 40, no. 5, pp. 375–379, 2006.
[5] J. Rhoads, T. Cooper, K. Fuchs, P. Schluter, and R. Zambuto, “Medical

device interoperability and the integrating the healthcare enterprise
(ihe) initiative.” Biomedical instrumentation & technology/Association

for the Advancement of Medical Instrumentation, p. 21, 2010.
[6] P. E. Lam, J. C. Mitchell, and S. Sundaram, Trust, Privacy and

Security in Digital Business: 6th International Conference, TrustBus

2009, Linz, Austria, September 3-4, 2009. Proceedings. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, ch. A Formalization of
HIPAA for a Medical Messaging System, pp. 73–85. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-03748-1 8

[7] B. Lambeau, C. Damas, and A. van Lamsweerde, “Process execution
and enactment in medical environments,” in 6th Workshop on Software

Engineering in Health Care (SEHC’2014), 2014.
[8] F. Campana, A. Moreno, D. Riaño, and L. Z. Varga, Agent Technology

and e-Health. Basel: Birkhäuser Basel, 2008, ch. K4Care:
Knowledge-Based Homecare e-Services for an Ageing Europe, pp.
95–115. [Online]. Available:
http://dx.doi.org/10.1007/978-3-7643-8547-7 6

[9] M. D. Harrison, P. Masci, J. C. Campos, and P. Curzon,
“Demonstrating that medical devices satisfy user related safety
requirements,” in 4th International Symposium on Foundations of

Healthcare Information Engineering and Systems (FHIES2014), 2014.
[10] P. Masci, Y. Zhang, P. Jones, P. Curzon, and H. Thimbleby, “Formal

verification of medical device user interfaces using PVS,” in
Fundamental Approaches to Software Engineering, ser. Lecture Notes
in Computer Science, S. Gnesi and A. Rensink, Eds. Springer Berlin
Heidelberg, 2014, vol. 8411, pp. 200–214. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-54804-8\ 14

[11] P. Masci, R. Rukšėnas, P. Oladimeji, A. Cauchi, A. Gimblett, Y. Li,
P. Curzon, and H. Thimbleby, “The benefits of formalising design
guidelines: A case study on the predictability of drug infusion pumps,”
Innov. Syst. Softw. Eng., vol. 11, no. 2, pp. 73–93, Jun. 2015. [Online].
Available: http://dx.doi.org/10.1007/s11334-013-0200-4

[12] C. Muñoz, “Rapid prototyping in PVS,” National Institute of
Aerospace, Hampton, VA, USA, Tech. Rep. NIA 2003-03,
NASA/CR-2003-212418, 2003.

[13] C. Bernardeschi, A. Domenici, and P. Masci, “Towards a formalization
of system requirements for an integrated clinical environment,” in 5th

EAI International Conference on Wireless Mobile Communication and

Healthcare (MOBIHEALTH 2015). Springer, 2015, in press.
[14] R. Butler and J. Sjogren, “A PVS Graph Theory Library,” NASA

Langley Research Center, Hampton, Virginia, NASA Technical
Memorandum 1998-206923, 1998.

[15] Y. K. Dalal and R. M. Metcalfe, “Reverse path forwarding of broadcast
packets,” Commun. ACM, vol. 21, no. 12, pp. 1040–1048, Dec. 1978.
[Online]. Available: http://doi.acm.org/10.1145/359657.359665


