
Verifying safety properties of a nonlinear control by interactive theorem proving

with the Prototype Verification System✩

Cinzia Bernardeschia, Andrea Domenicia,∗

aUniversity of Pisa, Dept. of Information Engineering Largo Lucio Lazzarino 1, 56122 Pisa, Italy

Abstract

Interactive, or computer-assisted, theorem proving is the verification of statements in a formal system, where the proof is
developed by a logician who chooses the appropriate inference steps, in turn executed by an automatic theorem prover.
In this paper, interactive theorem proving is used to verify safety properties of a nonlinear (hybrid) control system.

Keywords: Theorem Proving, Verification, Nonlinear Control, Prototype Verification System

1. Introduction

Many technical systems fall in the class of hybrid sys-

tems, i.e., nonlinear systems having both analog and dig-
ital components. Such systems are typically composed of
an analog plant, described by linear or nonlinear equa-
tions, and a digital control, intrinsically nonlinear. In in-
dustrial practice, hybrid systems are usually analyzed by
simulation. An executable model of the system is built
with graphical block-based languages such as those of-
fered by the Simulink(TM), Scilab, or ScicosLab environ-
ments [1, 2], or textual languages such as Modelica [3] or
CIF [4], or a combination of the two, and the model is
executed to simulate the system under various conditions.

While simulation is a mainstay of system development
and is a necessary tool for validation, it cannot provide
developers with the confidence afforded by formal verifi-
cation. Formal verification of nonlinear systems may be
difficult, but automatic or semiautomatic tools can pro-
vide valuable support to this task.

Schupp et al. [5] recently published an overview of hy-
brid systems verification, with short outlines of tools and
techniques for reachability analysis, examples of bench-
mark problems, and current challenges. A survey of works
on formal verification of hybrid systems was published by
Alur [6], who identifies some broad areas of research, in-
cluding symbolic reachability analysis and deductive veri-

fication.
In the area of symbolic reachability analysis, research

is focused on algorithms to compute or approximate a sys-
tem’s reach(ability) set, i.e., the set of states reachable

✩This is a preprint of the paper available online at
http://dx.doi.org/10.1016/j.ipl.2016.02.001.

∗Corresponding author. Tel. +39 050 2217674, Fax +39 050
2217600

Email address: andrea.domenici@ing.unipi.it (Andrea
Domenici)

from any of the admissible initial states, with the goal of
verifying whether the set contains unsafe states. For exam-
ple, Tiwari and Khanna [7] propose techniques to approx-
imate reach sets for different classes of hybrid automata,
based on qualitative abstraction [8], which in turns relies
on model checking. Model checking is also used by Cimatti
et al. [9], who implement a quantifier-free encoding of hy-
brid automata with the NuSMV [10] model checker.

Many tools have been developed to support the anal-
ysis of hybrid systems, including UPPAAL [11] for timed
automata, HybridSAL [12] based on the SAL [13] model
checker, ARIADNE [14], and HSOLVER [15]. In partic-
ular, ARIADNE has been used for nonlinear hybrid sys-
tem verification based on an assume-guarantee method,
and HSOLVER has been applied to safety verification with
constraint propagation and abstraction refinement.

In the area of deductive verification, KeYmaera [16]
is an interactive theorem-proving environment based on
sequent calculus and tailored to the differential dynamic
logic dL [17]. KeYmaera has been developed specifically
for hybrid systems, unlike other general-purpose theorem
provers, such as Coq [18], based on the calculus of induc-
tive constructions and intuitionistic logic, and Isabelle [19],
based on higher-order logic and functional programming.

In this paper, the PVS (Prototype Verification System)
theorem prover is used to prove basic properties of a typ-
ical case study, the level control of a storage tank. This
simple example shows that a higher-order theorem-proving
tool can support developers in expressing and verifying a
natural line of reasoning rooted on domain knowledge.

This paper is structured as follows: In Sec. 2, essential
information on the PVS language and deduction system is
provided; Sec. 3 introduces the case study; Sec. 4 describes
the formalization of the case study and how the PVS is
used to prove that certain constraints guarantee safe op-
eration of the system; Sec. 5 discusses the case study and
relates it to the general topic of hybrid system analysis;

Preprint submitted to Information Processing Letters February 16, 2016

http://dx.doi.org/10.1016/j.ipl.2016.02.001

and Sec. 6 concludes the paper.

2. The Prototype Verification System

The PVS is an interactive theorem prover developed
at Computer Science Laboratory, SRI International, by S.
Owre, N. Shankar, J. Rushby, and others [20, 21] and it has
been applied to many fields, including formal verification
of hardware and safety-critical systems [22, 23, 24]. Its
formal system is based on sequent calculus [25, 26, 27],
together with a typed higher-order language.

A PVS user writes a theory in the PVS language [28],
then uses the PVS theorem proving environment [29] to
prove selected formulas of the theory.

2.1. The PVS Language

In a PVS theory, one can declare types, constants, vari-
ables, and formulas. The PVS type system is very flexible,
providing users with standard mathematical types (e.g.,
naturals, integers, and reals) and allowing them to define
uninterpreted types, to build record and tuple types sim-
ilar to records in programming languages, and to define
function types (e.g., “the set of functions from integers to

reals”). In particular, functions returning Boolean values
are called predicates. It is also possible to define subtypes

by adding constraints to previously defined types. One can
then declare constants and variables (including function
constants and variables) and write formulas. A formula is
a named logical statement composed of atomic formulas,
logical connectives, and quantifiers.

Each formula is identified by a name and qualified by a
keyword specifying if the formula is an axiom or not. The
PVS prover takes axioms as proved statements, whereas
it requires the other formulas to be proved. Axioms are
recognized by the AXIOM keyword, the other formulas by
such keywords as LEMMA, THEOREM, or other synonyms. Ex-
amples of PVS declarations are found in Sec. 4.

The PVS environment includes a large number of pre-
packaged fundamental theories, called the prelude [30].
An even larger number of theories, covering, e.g., math-
ematical analysis, algebra, or probability, is available in
additional libraries, such as the NASA Langley PVS Li-
brary [31, 32].

2.2. The PVS Deduction System

As previously mentioned, PVS is based on the sequent
calculus. A sequent is an expression with this structure:

A1, A2, . . . , Am ⊢ B1, B2, . . . , Bn

where the Ai’s are the antecedents and the Bi’s are the
consequents. The ‘⊢’ symbol is called a turnstile and may
be read as “yields”. Each antecedent or consequent is
a formula built with atomic formulas, connectives, and
quantifiers.

A sequent is true if any formula occurs both as an an-
tecedent and as a consequent, or any antecedent is false, or

any consequent is true. Proving a formula (a goal) consists
in expressing it as a sequent without antecedents and ap-
plying inference rules until one of the previous conditions
for truth is met.

The PVS prover presents the user with the initial se-
quent corresponding to the formula to be proved. The user
applies a series of inference steps, invoking a prover com-
mand at each step. A prover command may result in the
application of a single inference rule of the sequent calcu-
lus, or a combination of several rules, possibly chosen and
iterated according to some pre-packaged strategy. Some
of the manipulations made available by the PVS prover
include: (i) Instantiating variables, in particular by intro-
ducing fresh Skolem constants; (ii) decomposing formulas

into simpler ones; (iii) introducing lemmas ; and (iv) apply-
ing substitutions. Some commands transform the current
goal into two or more subgoals : For example, the split

command transforms a goal of the form A ⇒ B ⊢ C into
two subgoals B ⊢ C and ⊢ A,C.

Usually, a PVS user directs the proof by making in-
formed choices about the main steps (such as introducing
the appropriate lemmas) and lets the prover deal with low-
level, tedious and error-prone manipulations. The prover,
however, supports also high-level proof strategies, such as
induction.

3. Water level control

The problem of controlling the level of a liquid (say,
water) in a tank is a well-known case study in control
theory. There are several versions of this problem, and
in this paper the one presented in [33] is considered. The
problem is stated as follows:

A cylindrical storage tank receives water
with a maximum volume flow rate C. Wa-
ter can be drained out with the same maxi-
mum flow rate C. The incoming flow rate wi(t)
may vary in time arbitrarily (within the men-
tioned limit), while the outgoing flow rate wo

is regulated by a valve according to the law
wo(t) = Cv(t), where v ∈ [0, 1] is the valve
position, with v = 0 when the valve is fully
closed and v = 1 when fully open. A level con-
trol must ensure that the water level remains
between the minimum and maximum levels L1

and L2, respectively. The control consists in
a level sensor and a valve actuator. The sen-
sor output k(t) is −1, 0, or 1 if the level is
below, equal to, or above the reference level
L = (L1 +L2)/2. The actuator opens or closes
the valve according to the law v′(t) = k(t),
where the prime symbol (’) stands for deriva-
tion.

In addition to the above description, it is assumed for
simplicity that the outgoing flow does not depend on the

2

water level, and that the outgoing pipe is always com-
pletely filled.

In this case study, the value of the water level as a
function of time is the solution of the differential equation
l′(t) = wi(t)−wo(t), where wi(t) is arbitrary, and wo(t) is
nonlinear, as it depends on the sensor output k(t), which
can be defined as:

k(t) =







−1 if l(t) < L
0 if l(t) = L
1 if l(t) > L

This system is physically simple, but hard to analyze
with the standard approaches of linear control theory, so
in a practical setting it would most likely be studied by
simulation. In [34], for example, it has been described and
simulated with the Modelica language. The next section
will show how a simple reasoning supported by computer-
assisted theorem proving enables developers to prove a re-
lationship among system parameters (namely, initial level,
maximum flow rate, and level bounds) that ensures cor-
rect operation. This relationship is proved symbolically,
therefore it has a general validity.

4. Safety property verification

The procedure to verify the safety properties of the
water level control can be summarized as follows:

1. As a preliminary step, the worst-case situations pos-
sibly leading to violation of safety requirements are
identified, the law of continuous evolution for the
system (or a safe approximation, in more complex
cases) in those situations is defined, and constraints
ensuring satisfaction of the safety requirements are
found.

2. A theory is defined in the PVS language, and the
safety theorems are expressed, with the conjunction
of the above law and constraints taken as hypotheses,
and the safety requirements taken as theses.

3. Intermediate lemmas are found and proved, recur-
ring to axioms of the specific theory and of general
theories (e.g., math analysis).

4. The theorems are proved from lemmas and axioms.

The safety property to be verified is that the water
level remains within the specified limits at all times, pro-
vided that the water intake satisfies the specified con-
straint. More precisely, a relationship among the system
parameters is found, which guarantees the safety property.

The above steps are described in the following subsec-
tions.

4.1. Step 1: Safety requirements

The problem statement (Sec. 3) specifies the laws gov-
erning the system and its physical constraints. The con-
straint L1 ≤ l(t) ≤ L2 is the conjunction of two require-

ments, one forbidding depletion of the tank, and one for-
bidding overflow. In order to find relationships that guar-
antee satisfaction of the requirements, the worst-case sit-
uations that could lead to depletion or overflow are con-
sidered: (i) No incoming flow, initial level below reference,
and fully open valve in case of depletion; and (ii) maxi-
mum incoming flow, initial level above reference, and fully
closed valve in case of overflow. These situations may arise
if the initial level and the valve position are set before ac-
tivation of the sensor at time ti = 0.

Let us consider situation (i). In this case, the valve will
close linearly wrt to time, the outgoing flow will decrease
linearly, and the water level will then vary quadratically.
The requirement that the level does not fall below L1 re-
duces to a quadratic inequality, and elementary algebra
provides the sought assumption on the initial level, i.e.,
Li > L1 +C/2.

4.2. Step 2: Logic modeling

The next step is the definition of a theory modeling
the system. First, the system parameters, declared as con-
stants, the variable representing time, and the water level
function:

C: posreal % max flowrate

L1: posreal % minimum level

L2: posreal % maximum level

L: posreal = (L1+L2)/2 % reference level

L_i: posreal % initial level

V_i: nnreal % initial valve posn

t: VAR real % time

l(t): real % water level

Types posreal and nnreal are the positive and non-negative
real numbers, respectively.

The sensor and valve specifications follow:

signum(x: real): integer =

COND

x < 0 -> -1,

x = 0 -> 0,

x > 0 -> 1

ENDCOND

k(t): integer % sensor output

= signum(l(t)-L)

v(t): real % valve position

valve_law: AXIOM

deriv(v) = k % derivative of v(t)

where the COND/ENDCOND block is the PVS case selection
statement.

Then, the storage tank specifications:

w_in(t): real % input flowrate

w_out(t): real = C*v(t) % output flowrate

level_law: AXIOM

deriv(l) = w_in - w_out % derivative of l(t)

3

Finally, some axioms (not shown) on the mathematical
well-behavedness of the various functions, and the basic
relationships among system parameters:

level_bounds: AXIOM

L1 < L2

init_level: AXIOM

l(0) = L_i

init_valve_posn: AXIOM

v(0) = V_i

The above definitions are the theory against which the
safety property must be verified, under some assumptions
on the initial water level. It is then possible to verify
satisfaction of the requirement against tank depletion by
interactively proving the following theorem:

no_depletion: THEOREM

forall (t: real):

(v = (lambda (x): (-1)*x + 1) % (1)

and w_in = const_fun(0) % (2)

and L_i > L1 + C/2 % (3)

IMPLIES

l(t) >= L1) % (4)

We observe how the lambda notation and function
const fun(c) (identically equal to parameter c) are used
to distinguish the definitions of functions v (v) and wi

(w in) from their application to arguments.
In the above theorem, line (1) asserts that the valve

position has the form 1 − x, line (2) asserts that the in-
coming flow is identically zero, line (3) is the assumption
relating the initial level to the lowest tolerated level and
the maximum possible flow, and line (4) is the safety re-
quirement. By similar reasoning, the following theorem
can be formulated for the requirement against overflow:

no_overflow: THEOREM

forall (t: real):

(v = (lambda (x): x)

and w_in = const_fun(C)

and L_i < L2 - C/2

IMPLIES

l(t) <= L2)

4.3. Step 3: Intermediate lemmas

The proof of Theorem no depletion requires that two
main lemmas (plus a few secondary ones) are preliminarily
proved.

Lemma level fun proves that l(t) is a quadratic form:

level_fun: LEMMA

v = (lambda (x): (-1)*x + 1)

and w_in = const_fun(0)

IMPLIES

l(t) = (C/2)*t^2 - C*t + l(0)

The lemma is proved by invoking the level law axiom,
plus a few simple lemmas on integration from the NASA
Langley library.

Lemma neg discr proves that the discriminant of l(t)−
L1 is negative if condition (3) of the theorem is satisfied:

neg_discr: LEMMA

L_i > L1 + C/2

IMPLIES

discr(C/2, -C, L_i-L1) < 0

Also this lemma is proved with lemmas from the NASA
Langley library, and commands from the PVSmanip pack-
age, which extends the prover with algebraic manipulation
steps [35, 36].

4.4. Step 4: Proving properties

The proof of the theorem can then begin by instan-
tiating the initial sequent with a Skolem constant (t!1,
automatically introduced by the prover) and decomposing
it into antecedent and consequent formulas:

{-1} v = (lambda (x): (-1)*x + 1)

{-2} w_in = const_fun(0)

{-3} L_i > L1 + C/2

|-------

{1} l(t!1) >= L1

Note that, in the PVS user interface, antecedent and
consequent formulas are separated by a dashed line, stacked
vertically, and labeled numerically. Antecedents have neg-
ative labels. The label of a formula may change as formulas
are rearranged in the course of a proof, and curly braces
highlight newly introduced or transformed formulas.

Then, lemma level fun is introduced and instantiated
(Formula {-1}):

{-1} v = (lambda (x): (-1)*x + 1)

AND w_in = const_fun(0)

IMPLIES

l(t!1) = (C/2)*t!1^2 - C*t!1 + l(0)

[-2] v = (lambda (x): (-1)*x + 1)

[-3] w_in = const_fun(0)

[-4] L_i > L1 + C/2

|-------

[1] l(t!1) >= L1

Splitting the implication in Antecedent {-1}, three sub-
goals are produced, the first one being the following:

{-1} l(t!1) = (C/2)*t!1^2 - C*t!1 + l(0)

[-2] v = (lambda (x): (-1)*x+ 1)

[-3] w_in = const_fun(0)

[-4] L_i > L1 + C/2

|-------

[1] l(t!1) >= L1

4

By substitution and elementary manipulations, it is
then possible to express the theorem’s thesis as a quadratic
inequality (Formula {1}):

[-1] v = (lambda (x): (-1)*x + 1)

[-2] w_in = const_fun(0)

[-3] L_i > L1 + C/2

|-------

{1} (C/2)*t!1^2 - C*t!1 + l(0) - L1 >= 0

This sequent is proved by invoking Lemma neg discr

and Axiom init level. The remaining two subgoals in-
troduced by implication splitting are immediately recog-
nized as true by the PVS prover:

[-1] v = (lambda (x): (-1)*x + 1)

[-2] w_in = const_fun(0)

[-3] L_i > L1 + C/2

|-------

{1} v = (lambda (x): (-1)*x + 1)

[2] l(t!1) >= L1

and

[-1] v = (lambda (x): (-1)*x + 1)

[-2] w_in = const_fun(0)

[-3] L_i > L1 + C/2

|-------

{1} w_in = const_fun(0)

[2] l(t!1) >= L1

Theorem no overflow is proved along the same lines.
In the two proofs, the developer’s task was to under-

stand the overall structure of the proof and select the rele-
vant axioms and lemmas. Long and repetitious sequences
of small inference steps have been dealt with by single
commands, relieving the developer of their burden and
potential mistakes. Also, it may be interesting to know
that a first attempt was made to prove the safety property
under weaker assumptions, namely, Li ≥ L1 for Theorem
no depletion and Li ≤ L2 for Theorem no overflow, but
failed proofs led to reconsidering the assumed behavior of
the system and finding the right assumptions, which take
the maximum flow rate C into account.

5. Discussion

This proof-of-concept example has been treated with
a heuristic (not to say näıve) approach. In particular, no
use has been made of the well-established theory of hybrid
systems.

The first step in the above section represents the safety
analysis part of the development process, carried out in-
dependently of the later verification phase and its tools.
The safety properties have been defined only on the two
states identified as worst-case situations, instead of ex-
pressing them, as is usually done, as global constraints on
the whole set of reachable states. Clearly, this has been

made possible by the simplicity of the physical system.
In more realistic cases, it would be difficult to find such
a set of “extreme” states, whose safety guarantees safety
in all other states. In fact, the algorithmic methods used
for hybrid system verification are based on the automatic

generation of the state space (or of safe approximations),
thus relieving developers of the need to figure out the most
relevant states for safety analysis.

This simple example, however, shows that a higher-
order theorem-proving tool can support developers in ex-
pressing and verifying a natural line of reasoning rooted on
domain knowledge. In more complex, but still tractable
problems, this kind of reasoning could lead to a better in-
sight of the physical problem, which might not be gained
through the use of automatic tools, more machine-intensive
and less human-intensive.

The hybrid-systems theory becomes indispensable when
system complexity makes the heuristic approach imprac-
ticable. In this case, both a description of the system as
a hybrid automaton and its safety properties can be for-
malized in higher-order logic in a simple and uniform way.
For example, Masci et al. [37] have modeled an implantable
pacemaker as a system of timed automata. The automata
are defined by their locations, the guards and invariants,
and the clock variables. All these are expressed in PVS
with uniform patterns: locations are represented by values
of an enumerated type, states are represented as records
whose members return the current location and the current
values of clock variables, and so on (in PVS, record mem-
bers are just another syntax for functions). This method
of representing timed automata in logic can be extended
to hybrid automata, and it can be mechanized to various
extent, depending on the type of automaton. A system
model in a graphical block language, or a textual one,
could be translated into a logic model. PVSio-web [38]
is an example of a tool that produces a logical model of
state machines (not yet hybrid automata) from a graphical
language [39] derived from Stateflow(TM).

While generation of logic models from other languages
can be almost completely automatized in a straightforward
way, using such models is a more complex issue.

The two main hurdles for the application of interactive
theorem proving are learning the language and learning
proof strategies. Formal logic is rarely included in en-
gineering syllabi, and the PVS language is quite complex.
However, much of its complexity is due to its wide-ranging
applicability and to the richness (or complexity) of its syn-
tax, which is very precise and often offers a few variant
forms to express a given meaning. In the authors’ experi-
ence, the main difficulty was in learning the subtleties of
the rigorous higher-order type system. It may be argued,
however, that a systems developer does not have to learn
the whole language and all its possible usages. If a stan-
dard formalization of hybrid systems is adopted, someone
using interactive theorem proving for safety analysis could
learn just the concepts and notations needed to understand
and use that formalization.

5

The harder issue of proving theorems can be tackled
in a similar way. To most engineers, applying theorems
is much easier than proving them, but mathematicians
know that there are standard patterns of demonstration
for many classes of theorems. Similarly, standard proof
patterns can be found for classes of hybrid systems and
for classes of properties to be verified.

Actually, one of the main goals in the authors’ work is
finding useful patterns both for system modeling and for
system verification, and packaging the latter in the form
of proof strategies that can be programmed into the PVS
prover [40] and invoked with simple commands.

Another issue related to proof strategies concerns the
different proof styles needed for the discrete and the con-
tinuous parts of hybrid systems. Most reported applica-
tions of the PVS concern digital systems, but applications
to continuous systems have also been made, for example in
air traffic control [41]. Proofs in the area of digital systems
typically rely on library theories for Boolean and integer al-
gebra and on induction, whereas in the area of continuous
systems, proofs rely on library theories for mathematical
analysis. The NASA Langley library offers a large col-
lection of theories on analysis, but at the time of writing
no collection of theories specifically devoted to differential
equations was available. This means that differential prob-
lems must be solved applying the basic theorems on inte-
gration and differentiation provided by the library, which
may require some creativity. When analytical solutions
cannot be found, approximation methods can be formal-
ized using other library theories, such as those on interval
arithmetic [42].

Interactive theorem proving can be seen as a comple-
ment to the better established techniques based on algo-
rithmic construction of abstractions or approximations of
a system, in particular of its reachability set. Its main
advantage is generality, in terms both of results and of
applicability. Results are general since they are usually
expressed in terms of symbolic quantities. For example,
in the case discussed in this paper, the safety requirement
against depletion was found to hold for any triple of free
parameters Li,L1,C satisfying Li > L1 + C/2. Applica-
bility is general because the laws of logical deduction are
intrinsically general. As explained above, it is highly de-
sirable to have pre-packaged theories and proof strategies
available, specialized for particular classes of problems, but
when a problem does not fit into anyone of those classes,
it is always possible to (try to) devise new ways to solve
it, at the price of a harder effort, whereas more automatic
techniques are often capable of dealing only with some
particular types of system.

Another feature of theorem-proving environments, and
of the PVS in particular, is modularity. Separate theories
can be defined for different subsystems or for different as-
pects of a (sub)system, and each theory can be referred
to by other theories. So, the overall model of a system
can be decomposed in (or built from) a number of the-
ories for each subsystem, plus a co-ordinating theory for

the overall system. Or, a separate theory can be defined
to solve one hard differential equation, or to simplify a set
of constraints. Specific theorems can be proved in each
subtheory, and then be used as lemmas to prove the main
verification goals. It is also likely that such intermediate
lemmas can be reused for different systems.

A more technical feature is that in the deductive ap-
proach it is possible to prove properties of a system’s state
space, but the state space does not have to be generated,
or approximated, or abstracted, as is the case for the tools
based on reachability analysis, which generally are limited
in their applicability by the problem of state-space explo-
sion.

The issue remains of the intrinsic difficulties of learning
language and techniques for interactive theorem proving,
as discussed earlier. It should be borne in mind, however,
that almost every verification tool has its own special lan-
guage and requires some experience to be used proficiently,
and also that many tools lack the generality of theorem
proving.

6. Conclusions

Formal verification has long been advocated as an im-
portant tool in the development of control systems, and
recommended by safety standards. However, its adoption
as a standard industrial practice is lagging behind model-
based simulation, due in part to the perceived complexity
of its tools and methodologies. This paper shows how a
state-of-the-art theorem proving environment can be an
effective tool, providing control systems developers with
the ability to prove in a rigorous but natural way some
general properties that simulation can validate only for
specific cases.

This work is part of an effort aimed at the application
of formal methods to modeling and verification of safety- or
mission-critical systems, including control logics [43, 44],
electromedical devices [37], and integrated clinical envi-
ronments [45]. Further work will focus on investigating
methodologies and proof techniques tailored to diverse ap-
plication domains, still in the area of safety-critical sys-
tems.

Acknowledgments

The authors wish to thank the anonymous referees for
their valuable comments and suggestions.

References

[1] A. Vande Wouwer, P. Saucez, C. Vilas Fernández, Simulation
of ODE/PDE Models with MATLAB, OCTAVE and SCILAB,
Springer International Publishing, 2014.

[2] S. L. Campbell, J.-P. Chancelier, R. Nikoukhah, Modeling and
Simulation in Scilab/Scicos with ScicosLab 4.4, Springer-Verlag
New York, 2010.

6

[3] P. Fritzson, Principles of Object-Oriented Modeling and Simu-
lation with Modelica 3.3: A Cyber-Physical Approach, Wiley,
2014.

[4] D. Van Beek, M. Reniers, J. Rooda, R. R. Schiffelers, Con-
crete syntax and semantics of the compositional interchange
format for hybrid systems, in: IFAC World Congress (IFAC
2008), Chung, Myung Jin and Misra, Pradeep, 2008, pp. 7979–
7986.

[5] S. Schupp, E. Ábrahám, X. Chen, I. Ben Makhlouf, G. Frehse,
S. Sankaranarayanan, S. Kowalewski, Current challenges in
the verification of hybrid systems, in: M. R. Mousavi,
C. Berger (Eds.), Cyber Physical Systems. Design, Model-
ing, and Evaluation, Vol. 9361 of Lecture Notes in Computer
Science, Springer International Publishing, 2015, pp. 8–24.
doi:10.1007/978-3-319-25141-7_2.
URL http://dx.doi.org/10.1007/978-3-319-25141-7_2

[6] R. Alur, Formal verification of hybrid systems, in: Proceed-
ings of the Ninth ACM International Conference on Embedded
Software, EMSOFT ’11, ACM, New York, NY, USA, 2011, pp.
273–278. doi:10.1145/2038642.2038685.
URL http://doi.acm.org/10.1145/2038642.2038685

[7] A. Tiwari, G. Khanna, Nonlinear systems: Approximating
reach sets, in: R. Alur, G. Pappas (Eds.), Hybrid Systems:
Computation and Control, Vol. 2993 of Lecture Notes in Com-
puter Science, Springer Berlin Heidelberg, 2004, pp. 600–614.
doi:10.1007/978-3-540-24743-2_40.
URL http://dx.doi.org/10.1007/978-3-540-24743-2_40

[8] A. Tiwari, G. Khanna, Series of abstractions for hybrid
automata, in: Proceedings of the 5th International Workshop
on Hybrid Systems: Computation and Control, HSCC ’02,
Springer-Verlag, London, UK, UK, 2002, pp. 465–478.
URL http://dl.acm.org/citation.cfm?id=646882.710763

[9] A. Cimatti, S. Mover, S. Tonetta, A quantifier-free SMT en-
coding of non-linear hybrid automata, in: Formal Methods in
Computer-Aided Design (FMCAD), 2012, 2012, pp. 187–195.

[10] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pis-
tore, M. Roveri, R. Sebastiani, A. Tacchella, NuSMV Version 2:
An OpenSource Tool for Symbolic Model Checking, in: Proc.
International Conference on Computer-Aided Verification (CAV
2002), Vol. 2404 of LNCS, Springer, Copenhagen, Denmark,
2002.

[11] G. Behrmann, A. David, K. Larsen, J. Hakansson, P. Petterson,
W. Yi, M. Hendriks, UPPAAL 4.0, in: Third International Con-
ference on Quantitative Evaluation of Systems (QEST 2006),
2006, pp. 125–126. doi:10.1109/QEST.2006.59.

[12] A. Tiwari, HybridSAL Relational Abstracter, in: Proceedings
of the 24th International Conference on Computer Aided Veri-
fication, CAV’12, Springer-Verlag, Berlin, Heidelberg, 2012, pp.
725–731. doi:10.1007/978-3-642-31424-7_56.
URL http://dx.doi.org/10.1007/978-3-642-31424-7_56

[13] S. Bensalem, V. Ganesh, Y. Lakhnech, C. Muñoz, S. Owre,
H. Rueß, J. Rushby, V. Rusu, H. Säıdi, N. Shankar, E. Singer-
man, A. Tiwari, An Overview of SAL, in: Proceedings of the
Fifth NASA Langley Formal Methods Workshop (LFM 2000),
2000, pp. 187–196.

[14] L. Benvenuti, D. Bresolin, P. Collins, A. Ferrari, L. Geretti,
T. Villa, Assume-guarantee verification of nonlinear hybrid sys-
tems with ARIADNE, Int. J. of Robust and Nonlinear Con-
trol (24) (2014) 699–724.

[15] S. Ratschan, Z. She, Safety verification of hybrid
systems by constraint propagation-based abstraction
refinement, ACM Trans. Embed. Comput. Syst. 6 (1).
doi:10.1145/1210268.1210276.
URL http://doi.acm.org/10.1145/1210268.1210276

[16] A. Platzer, J.-D. Quesel, KeYmaera: A Hybrid Theo-
rem Prover for Hybrid Systems (System Description), in:
A. Armando, P. Baumgartner, G. Dowek (Eds.), Auto-
mated Reasoning, Vol. 5195 of Lecture Notes in Com-
puter Science, Springer Berlin Heidelberg, 2008, pp. 171–178.
doi:10.1007/978-3-540-71070-7_15.
URL http://dx.doi.org/10.1007/978-3-540-71070-7_15

[17] A. Platzer, Differential dynamic logics, KI 24 (1) (2010) 75–77.
doi:10.1007/s13218-010-0014-6.
URL http://dx.doi.org/10.1007/s13218-010-0014-6

[18] C. Paulin-Mohring, Introduction to the Coq Proof-Assistant for
Practical Software Verification, in: B. Meyer, M. Nordio (Eds.),
Tools for Practical Software Verification, Vol. 7682 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, 2012,
pp. 45–95. doi:10.1007/978-3-642-35746-6_3.
URL http://dx.doi.org/10.1007/978-3-642-35746-6_3

[19] T. Nipkow, M. Wenzel, L. C. Paulson, Isabelle/HOL: A Proof
Assistant for Higher-order Logic, Springer-Verlag, Berlin, Hei-
delberg, 2002.

[20] S. Owre, J. Rushby, N. Shankar, PVS: A prototype ver-
ification system, in: D. Kapur (Ed.), Automated Deduc-
tion — CADE-11, Vol. 607 of Lecture Notes in Com-
puter Science, Springer Berlin Heidelberg, 1992, pp. 748–752.
doi:10.1007/3-540-55602-8_217.
URL http://dx.doi.org/10.1007/3-540-55602-8_217

[21] S. Owre, S. Rajan, J. Rushby, N. Shankar, M. Srivas, PVS:
combining specification, proof checking, and model checking,
in: R. Alur, T. Henzinger (Eds.), Computer-Aided Verification,
CAV ’96, no. 1102 in LNCS, Springer-Verlag, 1996, pp. 411–414.

[22] M. Srivas, H. Rueß, D. Cyrluk, Hardware verification using
PVS, in: T. Kropf (Ed.), Formal Hardware Verification: Meth-
ods and Systems in Comparison, Vol. 1287 of Lecture Notes in
Computer Science, Springer-Verlag, 1997, pp. 156–205.

[23] V. Carreño, C. Muñoz, Aircraft trajectory modeling and alert-
ing algorithm verification, in: M. Aagaard, J. Harrison (Eds.),
Theorem Proving in Higher Order Logics, Vol. 1869 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, 2000,
pp. 90–105. doi:10.1007/3-540-44659-1_6.
URL http://dx.doi.org/10.1007/3-540-44659-1_6

[24] V. Carreño, C. Muñoz, Safety verification of the Small Aircraft
Transportation System concept of operations, in: Proceedings
of the AIAA 5th aviation, technology, integration, and opera-
tions conference (AIAA-2005-7423), 2005.

[25] J.-Y. Girard, Y. Lafont, P. Taylor, Proofs and Types, Vol. 7 of
Cambridge Tracts in Theoretical Computer Science, Cambridge
University Press, 1990.
URL http://www.paultaylor.eu/stable/Proofs+Types.html

[26] G. K. E. Gentzen, Untersuchungen über das logische
Schließen. I, Mathematische Zeitschrift 39 (2) (1934) 176–210.
doi:10.1007/BF01201353.

[27] G. K. E. Gentzen, Untersuchungen über das logische
Schließen. II, Mathematische Zeitschrift 39 (3) (1934) 176–210.
doi:10.1007/bf01201363.

[28] S. Owre, N. Shankar, J. M. Rushby, D. W. J. Stringer-Calvert,
PVS Language Reference, Version 2.4, Tech. rep., SRI Interna-
tional Computer Science Laboratory, 333 Ravenswood Avenue,
Menlo Park CA 94025, USA (2001).

[29] N. Shankar, S. Owre, J. M. Rushby, D. W. J. Stringer-Calvert,
PVS Prover Guide, Version 2.4, Tech. rep., SRI International
Computer Science Laboratory, 333 Ravenswood Avenue, Menlo
Park CA 94025, USA (2001).

[30] S. Owre, N. Shankar, The PVS Prelude Library, Tech. rep., SRI
International Computer Science Laboratory, 333 Ravenswood
Avenue, Menlo Park CA 94025, USA (2001).

[31] B. Dutertre, Elements of mathematical analysis in PVS,
in: G. Goos, J. Hartmanis, J. van Leeuwen, J. von
Wright, J. Grundy, J. Harrison (Eds.), Theorem Proving in
Higher Order Logics, Vol. 1125 of Lecture Notes in Com-
puter Science, Springer Berlin Heidelberg, 1996, pp. 141–156.
doi:10.1007/BFb0105402.
URL http://dx.doi.org/10.1007/BFb0105402

[32] H. Gottliebsen, Transcendental Functions and Continuity
Checking in PVS, in: M. Aagaard, J. Harrison (Eds.), Theorem
Proving in Higher Order Logics, Vol. 1869 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2000, pp. 197–
214. doi:10.1007/3-540-44659-1_13.
URL http://dx.doi.org/10.1007/3-540-44659-1_13

[33] S. Bliudze, D. Krob, Modelling of complex systems: Systems as

7

http://dx.doi.org/10.1007/978-3-319-25141-7_2
http://dx.doi.org/10.1007/978-3-319-25141-7_2
http://dx.doi.org/10.1007/978-3-319-25141-7_2
http://doi.acm.org/10.1145/2038642.2038685
http://dx.doi.org/10.1145/2038642.2038685
http://doi.acm.org/10.1145/2038642.2038685
http://dx.doi.org/10.1007/978-3-540-24743-2_40
http://dx.doi.org/10.1007/978-3-540-24743-2_40
http://dx.doi.org/10.1007/978-3-540-24743-2_40
http://dl.acm.org/citation.cfm?id=646882.710763
http://dl.acm.org/citation.cfm?id=646882.710763
http://dx.doi.org/10.1109/QEST.2006.59
http://dx.doi.org/10.1007/978-3-642-31424-7_56
http://dx.doi.org/10.1007/978-3-642-31424-7_56
http://dx.doi.org/10.1007/978-3-642-31424-7_56
http://doi.acm.org/10.1145/1210268.1210276
http://dx.doi.org/10.1145/1210268.1210276
http://doi.acm.org/10.1145/1210268.1210276
http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1007/s13218-010-0014-6
http://dx.doi.org/10.1007/s13218-010-0014-6
http://dx.doi.org/10.1007/s13218-010-0014-6
http://dx.doi.org/10.1007/978-3-642-35746-6_3
http://dx.doi.org/10.1007/978-3-642-35746-6_3
http://dx.doi.org/10.1007/978-3-642-35746-6_3
http://dx.doi.org/10.1007/3-540-55602-8_217
http://dx.doi.org/10.1007/3-540-55602-8_217
http://dx.doi.org/10.1007/3-540-55602-8_217
http://dx.doi.org/10.1007/3-540-44659-1_6
http://dx.doi.org/10.1007/3-540-44659-1_6
http://dx.doi.org/10.1007/3-540-44659-1_6
http://www.paultaylor.eu/stable/Proofs+Types.html
http://www.paultaylor.eu/stable/Proofs+Types.html
http://dx.doi.org/10.1007/BF01201353
http://dx.doi.org/10.1007/bf01201363
http://dx.doi.org/10.1007/BFb0105402
http://dx.doi.org/10.1007/BFb0105402
http://dx.doi.org/10.1007/BFb0105402
http://dx.doi.org/10.1007/3-540-44659-1_13
http://dx.doi.org/10.1007/3-540-44659-1_13
http://dx.doi.org/10.1007/3-540-44659-1_13

dataflow machines, Fundam. Inf. 91 (2) (2009) 251–274.
URL http://dl.acm.org/citation.cfm?id=2362676.2362680

[34] S. Furic, Enforcing Reliability of Discrete-Time Models in Mod-
elica, in: Proceedings of the 8th International Modelica Confer-
ence, 2011, pp. 638–649.

[35] B. Di Vito, Strategy-enhanced interactive proving and arith-
metic simplification for PVS, in: Proceedings of the 1st In-
ternational Workshop on Design and Application of Strate-
gies/Tactics in Higher Order Logics (STRATA 2003), 2003, pp.
43–55.

[36] B. Di Vito, Manip User’s Guide, Version 1.3 (2011).
[37] C. Bernardeschi, A. Domenici, P. Masci, Integrated simula-

tion of implantable cardiac pacemaker software and heart mod-
els, in: CARDIOTECHNIX 2014, 2d International Congress
on Cardiovascular Technology, SCITEPRESS, 2014, pp. 55–59.
doi:10.5220/0005153900550059.

[38] P. Oladimeji, P. Masci, P. Curzon, H. Thimbleby, PVSio-web:
a tool for rapid prototyping device user interfaces in PVS, in:
FMIS2013, 5th International Workshop on Formal Methods for
Interactive Systems, London, UK, June 24, 2013, 2013.

[39] P. Masci, Y. Zhang, P. Jones, P. Oladimeji, E. D’Urso,
C. Bernardeschi, P. Curzon, H. Thimbleby, Combining PVSio
with stateflow, in: Proceedings of the 6th NASA Formal Meth-
ods Symposium (NFM2014), Springer-Verlag, Berlin, Heidel-
berg, 2014.

[40] M. Archer, B. D. Vito, Developing user strategies in pvs: A
tutorial, in: In: Proceedings of the First International Work-
shop on Design and Application of Strategies/Tactics in Higher
Order Logics (STRATA, 2003.

[41] C. Muñoz, A. Narkawicz, G. Hagen, J. Upchurch, A. Dutle,
M. Consiglio, DAIDALUS: Detect and Avoid Alerting Logic for
Unmanned Systems, in: Proceedings of the 34th Digital Avion-
ics Systems Conference (DASC 2015), Prague, Czech Republic,
2015.

[42] M. Daumas, D. Lester, C. Muñoz, Verified real number calcula-
tions: A library for interval arithmetic, IEEE Transactions on
Computers 58 (2) (2009) 226–237.

[43] C. Bernardeschi, L. Cassano, A. Domenici, P. Masci, Simula-
tion and Test-Case Generation for PVS Specifications of Con-
trol Logics, International Journal on Advances in Software 4 (3
& 4) (2011) 327–341.

[44] C. Bernardeschi, L. Cassano, A. Domenici, P. Masci, Debugging
PVS specifications of control logics via event-driven simulation,
in: Computation Tools 2010, IARIA, Lisbon, Portugal, 2010.

[45] C. Bernardeschi, A. Domenici, P. Masci, Towards a formal-
ization of system requirements for an integrated clinical en-
vironment, in: 5th EAI International Conference on Wireless
Mobile Communication and Healthcare (MOBIHEALTH 2015),
Springer, 2015, in press.

8

http://dl.acm.org/citation.cfm?id=2362676.2362680
http://dl.acm.org/citation.cfm?id=2362676.2362680
http://dx.doi.org/10.5220/0005153900550059

	Introduction
	The Prototype Verification System
	The PVS Language
	The PVS Deduction System

	Water level control
	Safety property verification
	Step 1: Safety requirements
	Step 2: Logic modeling
	Step 3: Intermediate lemmas
	Step 4: Proving properties

	Discussion
	Conclusions

